• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Jia Xibin, Jin Ya, Chen Juncheng. Domain Alignment Based on Multi-Viewpoint Domain-Shared Feature for Cross-Domain Sentiment Classification[J]. Journal of Computer Research and Development, 2018, 55(11): 2439-2451. DOI: 10.7544/issn1000-1239.2018.20170496
Citation: Jia Xibin, Jin Ya, Chen Juncheng. Domain Alignment Based on Multi-Viewpoint Domain-Shared Feature for Cross-Domain Sentiment Classification[J]. Journal of Computer Research and Development, 2018, 55(11): 2439-2451. DOI: 10.7544/issn1000-1239.2018.20170496

Domain Alignment Based on Multi-Viewpoint Domain-Shared Feature for Cross-Domain Sentiment Classification

More Information
  • Published Date: October 31, 2018
  • Plenty and well labeled training samples are significant foundation to make sure the good performance of supervising learning, whereas there is a problem of high labor-cost and time-consuming in the samples. Furthermore, it is not always feasible to get the plenty of well-labeled sample data in every application to support the classification training. Meanwhile, directly employing the trained model from the source domain to the target domain normally causes the problem of accuracy degradation, due to the information distribution discrepancy between the source domain and the target domain. Aiming to solve the above problems, we propose an algorithm named domain alignment based on multi-viewpoint domain-shared feature for cross-domain sentiment classification (DAMF). Firstly, we fuse three sentiment lexicons to eliminate the polarity divergence of domain-shared feature words that are chosen by mutual information value. On this basis, we extract the word pairs that have the same sentiment polarity in the same domain by utilizing four syntax rules and the word pairs that have strong association relation in the same domain by utilizing association rules algorithm. Then, we use the domain-shared words that have no polarity divergence as a bridge to establish an indirect mapping relationship between domain-specific words in different domains. By constructing the unified feature representation space of different domains, the domain alignment is achieved. Meanwhile, the experiments on four public data sets from Amazon product reviews corpora show the effectiveness of our proposed algorithm on cross-domain sentiment classification.
  • Related Articles

    [1]Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
    [2]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [3]Zhang Liqing, Guo Dong, Wu Shaoling, Cui Haibo, Wang Wei. An Ultra Lightweight Container that Maximizes Memory Sharing and Minimizes the Runtime Environment[J]. Journal of Computer Research and Development, 2019, 56(7): 1545-1555. DOI: 10.7544/issn1000-1239.2019.20180511
    [4]Yan Xiaoqiang, Ye Yangdong. Cross-Media Clustering by Share and Private Information Maximization[J]. Journal of Computer Research and Development, 2019, 56(7): 1370-1382. DOI: 10.7544/issn1000-1239.2019.20180470
    [5]Zhang Fenxiang, Chen Huahui, Qian Jiangbo, Dong Yihong. HSSM: A Hierarchical Method for Streaming Submodular Maximization[J]. Journal of Computer Research and Development, 2016, 53(8): 1792-1805. DOI: 10.7544/issn1000-1239.2016.20160140
    [6]Li Xiaokang, Zhang Xi, Sun Hao, Sun Guangzhong. Influence Maximization Across Multi-Channels in Social Network[J]. Journal of Computer Research and Development, 2016, 53(8): 1709-1718. DOI: 10.7544/issn1000-1239.2016.20160211
    [7]Guo Jingfeng, Lü Jiaguo. Influence Maximization Based on Information Preference[J]. Journal of Computer Research and Development, 2015, 52(2): 533-541. DOI: 10.7544/issn1000-1239.2015.20131311
    [8]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [9]Chen Hao and Wang Yitong. Threshold-Based Heuristic Algorithm for Influence Maximization[J]. Journal of Computer Research and Development, 2012, 49(10): 2181-2188.
    [10]Qi Yingjian, Luo Siwei, Huang Yaping, Li Aijun, Liu Yunhui. An Annealing Expectation Maximization Algorithm[J]. Journal of Computer Research and Development, 2006, 43(4): 654-660.
  • Cited by

    Periodical cited type(10)

    1. 王娟,努尔买买提·黑力力. 基于字典分级和属性加权的密文排序检索方案. 新疆大学学报(自然科学版)(中英文). 2024(02): 246-256 .
    2. 刘佩恒,张劼,张华,张欣,王梦迪. 支持语义扩展的多关键词密文检索方案. 中国电子科学研究院学报. 2024(01): 42-52 .
    3. 於湘涛,温刚,刘冉,舒斐,刘威麟,赛峰. 电力调度自动化网络安全防护技术研究. 微型电脑应用. 2024(12): 187-190+198 .
    4. 刘宁,牛佳乐,郑剑,李思岑,王丹丹. 基于向量空间模型的信息资源关键词智能检索工具的研究. 自动化技术与应用. 2023(10): 105-107+161 .
    5. 管小明,李宏俊. 基于支持可验证的物联网感知层信息加密仿真. 计算机仿真. 2023(11): 357-360+441 .
    6. 黄健,铁治欣,宋滢锟. 云存储环境中多关键词加密排序搜索方法研究. 软件导刊. 2022(01): 226-232 .
    7. 牛淑芬,张美玲,周思玮,闫森. 面向移动终端的密文可验证属性基可搜索加密方案. 计算机工程与科学. 2022(11): 1941-1950 .
    8. 陈红鹏,樊增辉. 基于数据加密技术的海外数据中心拓扑架构设计. 微型电脑应用. 2022(12): 204-208 .
    9. 王娜,郑坤,付俊松,李剑. 基于分块的移动边缘计算密文检索方法. 通信学报. 2020(07): 95-102 .
    10. 霍颖瑜. 基于混沌算法的高端装备指令数据加密方法. 兵器装备工程学报. 2020(11): 190-193 .

    Other cited types(14)

Catalog

    Article views (1243) PDF downloads (541) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return