• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Duan Shihong, Yao Cui, Xu Cheng, He Jie. Performance Evaluation of UWB and IMU Fusion Positioning in Wireless Sensor Network[J]. Journal of Computer Research and Development, 2018, 55(11): 2501-2510. DOI: 10.7544/issn1000-1239.2018.20170661
Citation: Duan Shihong, Yao Cui, Xu Cheng, He Jie. Performance Evaluation of UWB and IMU Fusion Positioning in Wireless Sensor Network[J]. Journal of Computer Research and Development, 2018, 55(11): 2501-2510. DOI: 10.7544/issn1000-1239.2018.20170661

Performance Evaluation of UWB and IMU Fusion Positioning in Wireless Sensor Network

More Information
  • Published Date: October 31, 2018
  • Location is one of the basic properties for an object. With the development of wireless sensor network (WSN), the requirements for sensor nodes’ location have become more and more important in practical applications. Ultra-wideband (UWB) and inertial measurement units (IMU) have been widely used in WSN due to their high positioning accuracy. UWB is of high accuracy but it is susceptible to multipath effects and relative geometric position relationships between nodes. IMU can provide continuous inertial information, but cannot solve the cumulative error problem. Thus, the fusion positioning method based on UWB and IMU can compensate the UWB multipath effect and IMU error accumulation problem, and finally improve the positioning accuracy. In this paper, a new fusion positioning method based on UWB and IMU is proposed to realize the high-precision position tracking of the target nodes in sensor network. The CRLB (Cramer-Rao lower bound) is calculated to characterize the spatial location performance of the fusion positioning method, and the PCRLB (posterior Cramer-Rao lower bound) is calculated to characterize the temporal positioning performance of the fusion localization method. Both CRLB and PCRLB are used to provide theoretical support for the design and simulation of the fusion positioning algorithms. Experimental results show that the proposed fusion method has better positioning performance in both temporal and spatial aspects, which is closer to the theoretical lower bound of practical application.
  • Related Articles

    [1]Lu Yuxuan, Kong Lanju, Zhang Baochen, Min Xinping. MC-RHotStuff: Multi-Chain Oriented HotStuff Consensus Mechanism Based on Reputation[J]. Journal of Computer Research and Development, 2024, 61(6): 1559-1572. DOI: 10.7544/issn1000-1239.202330195
    [2]Yu Xiao, Liu Hui, Lin Yuxiu, Zhang Caiming. Consensus Guided Auto-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1496-1508. DOI: 10.7544/issn1000-1239.20210126
    [3]Yang Hongzhang, Yang Yahui, Tu Yaofeng, Sun Guangyu, Wu Zhonghai. Proactive Fault Tolerance Based on “Collection—Prediction—Migration—Feedback” Mechanism[J]. Journal of Computer Research and Development, 2020, 57(2): 306-317. DOI: 10.7544/issn1000-1239.2020.20190549
    [4]Wang Zuan, Tian Youliang, Yue Chaoyue, Zhang Duo. Consensus Mechanism Based on Threshold Cryptography Scheme[J]. Journal of Computer Research and Development, 2019, 56(12): 2671-2683. DOI: 10.7544/issn1000-1239.2019.20190053
    [5]Wei Songjie, Li Shuai, Mo Bing, Wang Jiahe. Regional Cooperative Authentication Protocol for LEO Satellite Networks Based on Consensus Mechanism[J]. Journal of Computer Research and Development, 2018, 55(10): 2244-2255. DOI: 10.7544/issn1000-1239.2018.20180431
    [6]Liu Yiran, Ke Junming, Jiang Han, Song Xiangfu. Improvement of the PoS Consensus Mechanism in Blockchain Based on Shapley Value[J]. Journal of Computer Research and Development, 2018, 55(10): 2208-2218. DOI: 10.7544/issn1000-1239.2018.20180439
    [7]Ye Songtao, Lin Yaping, Hu Yupeng, Zhou Siwang, You Zhiqiang. A Faulty Sensor Node Tolerance Algorithm Based on Cut Point Set[J]. Journal of Computer Research and Development, 2009, 46(12): 2117-2125.
    [8]Han Jianjun, Gan Lu, Ruan Youlin, Li Qinghua, Abbas A.Essa. Real-Time Dynamic Scheduling Algorithms for the Savings of Power Consumption and Fault Tolerance in Multi-Processor Computing Environment[J]. Journal of Computer Research and Development, 2008, 45(4): 706-715.
    [9]Cheng Xin, Liu Hongwei, Dong Jian, Yang Xiaozong. A Fault Tolerance Deadlock Detection/Resolution Algorithm for the AND-OR Model[J]. Journal of Computer Research and Development, 2007, 44(5): 798-805.
    [10]Luo Wei, Yang Fumin, Pang Liping, and Li Jun. A Real-Time Fault-Tolerant Scheduling Algorithm for Distributed Systems Based on Deferred Active Backup-Copy[J]. Journal of Computer Research and Development, 2007, 44(3).
  • Cited by

    Periodical cited type(10)

    1. 王娟,努尔买买提·黑力力. 基于字典分级和属性加权的密文排序检索方案. 新疆大学学报(自然科学版)(中英文). 2024(02): 246-256 .
    2. 刘佩恒,张劼,张华,张欣,王梦迪. 支持语义扩展的多关键词密文检索方案. 中国电子科学研究院学报. 2024(01): 42-52 .
    3. 於湘涛,温刚,刘冉,舒斐,刘威麟,赛峰. 电力调度自动化网络安全防护技术研究. 微型电脑应用. 2024(12): 187-190+198 .
    4. 刘宁,牛佳乐,郑剑,李思岑,王丹丹. 基于向量空间模型的信息资源关键词智能检索工具的研究. 自动化技术与应用. 2023(10): 105-107+161 .
    5. 管小明,李宏俊. 基于支持可验证的物联网感知层信息加密仿真. 计算机仿真. 2023(11): 357-360+441 .
    6. 黄健,铁治欣,宋滢锟. 云存储环境中多关键词加密排序搜索方法研究. 软件导刊. 2022(01): 226-232 .
    7. 牛淑芬,张美玲,周思玮,闫森. 面向移动终端的密文可验证属性基可搜索加密方案. 计算机工程与科学. 2022(11): 1941-1950 .
    8. 陈红鹏,樊增辉. 基于数据加密技术的海外数据中心拓扑架构设计. 微型电脑应用. 2022(12): 204-208 .
    9. 王娜,郑坤,付俊松,李剑. 基于分块的移动边缘计算密文检索方法. 通信学报. 2020(07): 95-102 .
    10. 霍颖瑜. 基于混沌算法的高端装备指令数据加密方法. 兵器装备工程学报. 2020(11): 190-193 .

    Other cited types(14)

Catalog

    Article views (1784) PDF downloads (519) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return