• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yong, Xie Shengnan, Zhong Zhiwei, Li Jinbao, Ren Qianqian. Topic-Interest Based Influence Maximization Algorithm in Social Networks[J]. Journal of Computer Research and Development, 2018, 55(11): 2406-2418. DOI: 10.7544/issn1000-1239.2018.20170672
Citation: Liu Yong, Xie Shengnan, Zhong Zhiwei, Li Jinbao, Ren Qianqian. Topic-Interest Based Influence Maximization Algorithm in Social Networks[J]. Journal of Computer Research and Development, 2018, 55(11): 2406-2418. DOI: 10.7544/issn1000-1239.2018.20170672

Topic-Interest Based Influence Maximization Algorithm in Social Networks

More Information
  • Published Date: October 31, 2018
  • Influence maximization is a problem of finding a small set of seed nodes in a social network that maximizes the spread scope of a propagation item. Existing works only take into account the topic distribution on propagation items, but ignore the interest distribution on users. This paper focuses on how to select the most influential seeds when both the topic distribution of propagation items and the interest distribution of users are taken into consideration. A topic-interest independent cascade (TI-IC) propagation model is proposed, and an expectation maximization (EM) algorithm is proposed to learn the parameters of the TI-IC model. Based on the TI-IC model, a topic-interest influence maximization (TIIM) problem is proposed, and a new heuristic algorithm called ACG-TIIM is presented to solve TIIM. ACG-TIIM first takes each user as a root node to construct a reachable path tree, roughly estimate the influence scope of each user, and then sorts all the users according to the estimated influence scope to select a small number of users as candidate seeds, finally uses the greedy algorithm with EFLF optimization to select the most influential seeds from candidate seeds. The experimental results on real datasets show that TI-IC model is superior to classical IC and TIC models in describing propagation law and predicting propagation results. ACG-TIIM can solve the TIIM problem effectively and efficiently.
  • Cited by

    Periodical cited type(7)

    1. 李翔硕,畅广辉,苏盛,阮冲,吴坡,李斌. 变电监控系统网络安全威胁指标研究综述与展望. 电力科学与技术学报. 2024(04): 1-10 .
    2. 高莉莉,高雪,林钰浩,吴钰博,范金鹏. 楼宇建筑空调系统设备错误连接关系自动检测算法. 制冷与空调(四川). 2022(02): 311-316+323 .
    3. 马标,胡梦娜,张重豪,周正寅,贾俊铖,杨荣举. 基于融合马尔科夫模型的工控网络流量异常检测方法. 信息安全学报. 2022(03): 17-32 .
    4. 燕敏,阮秀琴,赵阳,郑宏涛. 基于小样本学习的物联网异常状态修正算法. 计算机仿真. 2022(08): 389-393 .
    5. 张书钦,白光耀,李红,张敏智. 多源数据融合的物联网安全知识推理方法. 计算机研究与发展. 2022(12): 2735-2749 . 本站查看
    6. 陈国瑞,袁旭华. 基于HDFS开源架构的异常数据实时检测算法. 计算机仿真. 2021(08): 445-449 .
    7. 谢胜平. 石灰粉一体化加工设备状态检测与故障维修系统. 机械设计与制造工程. 2021(09): 44-48 .

    Other cited types(5)

Catalog

    Article views (1055) PDF downloads (455) Cited by(12)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return