• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Ke, Cai Xiaojun, Zhang Zhiyong, Zhao Mengying, Jia Zhiping. Design and Verification of NVM Control Architecture Based on High-Performance SOC FPGA Array[J]. Journal of Computer Research and Development, 2018, 55(2): 265-272. DOI: 10.7544/issn1000-1239.2018.20170695
Citation: Liu Ke, Cai Xiaojun, Zhang Zhiyong, Zhao Mengying, Jia Zhiping. Design and Verification of NVM Control Architecture Based on High-Performance SOC FPGA Array[J]. Journal of Computer Research and Development, 2018, 55(2): 265-272. DOI: 10.7544/issn1000-1239.2018.20170695

Design and Verification of NVM Control Architecture Based on High-Performance SOC FPGA Array

More Information
  • Published Date: January 31, 2018
  • Emerging non-volatile memory (NVM) technologies are getting mature with lower latency and higher bandwidth. In the future, these new technologies show the potentials that not only replace the DRAM as the main memory but also serve in the external memory storage. Meanwhile, designing an efficient memory system has become popular in both the academic world and the industrial world. In this paper, we describe a high-performance NVM verification architecture based on the array of SOC FPGAs. Within the architecture, multiple levels of FPGAs are employed to connect many NVMs. Based on the architecture, we propose a novel master-slave NVM controller and then design a hardware prototype accordingly. The experiment results running on this prototype show that the architecture can not only test the performance of the homogenous NVM groups, but also verify the management scheme of hybrid NVM arrays. Moreover, the high performance of MRAM shows that MRAM has the potential to serve in both cache and main memory.
  • Related Articles

    [1]Kong Hao, Lu Wenyan, Chen Yan, Yan Guihai, Li Xiaowei. Survey of Sort Acceleration Methods on FPGA[J]. Journal of Computer Research and Development, 2024, 61(3): 780-798. DOI: 10.7544/issn1000-1239.202220789
    [2]Qi Le, Chang Yisong, Chen Yuxiao, Zhang Xu, Chen Mingyu, Bao Yungang, Zhang Ke. A System-Level Platform with SoC-FPGA for RISC-V Hardware-Software Integration[J]. Journal of Computer Research and Development, 2023, 60(6): 1204-1215. DOI: 10.7544/issn1000-1239.202330060
    [3]Li Xiaobo, Tang Zhimin, Li Wen. FPGA Verification for Heterogeneous Multi-Core Processor[J]. Journal of Computer Research and Development, 2021, 58(12): 2684-2695. DOI: 10.7544/issn1000-1239.2021.20200289
    [4]Chen Ji, Liu Haikun, Wang Xiaoyuan, Zhang Yu, Liao Xiaofei, Jin Hai. Largepages Supported Hierarchical DRAMNVM Hybrid Memory Systems[J]. Journal of Computer Research and Development, 2018, 55(9): 2050-2065. DOI: 10.7544/issn1000-1239.2018.20180269
    [5]Li Junnan, Yang Xiangrui, Sun Zhigang. DrawerPipe: A Reconfigurable Packet Processing Pipeline for FPGA[J]. Journal of Computer Research and Development, 2018, 55(4): 717-728. DOI: 10.7544/issn1000-1239.2018.20170927
    [6]Zhu Ying, Chen Cheng, Xu Xiaohong, and Li Yanzhe. Design and Implementation of FPGA Verification Platform for Multi-core Processor[J]. Journal of Computer Research and Development, 2014, 51(6): 1295-1303.
    [7]Xia Fei, Dou Yong, Xu Jiaqing, Zhang Yang. Fine-Grained Parallel Zuker Algorithm Accelerator with Storage Optimization on FPGA[J]. Journal of Computer Research and Development, 2011, 48(4): 709-719.
    [8]Wang Jiandong, Zhu Chao, Xie Yingke, Han Chengde, Zhao Zili. FPGA-Based Parallel Real-Time System for 10Gbps Traffic Processing[J]. Journal of Computer Research and Development, 2009, 46(2): 177-185.
    [9]Hao Zhiquan, Wang Zhensong, Liu Bo. Research on Real-Time Realizing PGA Algorithm in FPGA[J]. Journal of Computer Research and Development, 2008, 45(2): 342-347.
    [10]Guo Meng, Jian Fangjun, Zhang Qin, Xu Bin, Wang Zhensong, Han Chengde. FPGA-Based Real-Time Imaging System for Spaceborne SAR[J]. Journal of Computer Research and Development, 2007, 44(3).

Catalog

    Article views (1375) PDF downloads (609) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return