• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Heng, Zhang Libo, WuYanjun. Large-Scale Graph Processing on Multi-GPU Platforms[J]. Journal of Computer Research and Development, 2018, 55(2): 273-288. DOI: 10.7544/issn1000-1239.2018.20170697
Citation: Zhang Heng, Zhang Libo, WuYanjun. Large-Scale Graph Processing on Multi-GPU Platforms[J]. Journal of Computer Research and Development, 2018, 55(2): 273-288. DOI: 10.7544/issn1000-1239.2018.20170697

Large-Scale Graph Processing on Multi-GPU Platforms

More Information
  • Published Date: January 31, 2018
  • GPU-based node has emerged as a promising direction toward efficient large-scale graph processing, which is relied on the high computational power and scalable caching mechanisms of GPUs. Out-of-core graphs are the graphs that exceed main and GPU-resident memory capacity. To handle them, most existing systems using GPUs employ compact partitions of fix-sized ordered edge sets (i.e., shards) for the data movement and computation. However, when scaling to platforms with multiple GPUs, these systems have a high demand of interconnect (PCI-E) bandwidth. They suffer from GPU underutilization and represent scalability and performance bottlenecks. This paper presents GFlow, an efficient and scalable graph processing system to handle out-of-core graphs on multi-GPU nodes. In GFlow, we propose a novel 2-level streaming windows method, which stores graph’s attribute data consecutively in shared memory of multi-GPUs, and then streams graph’s topology data (shards) to GPUs. With the novel 2-level streaming windows, GFlow streams shards dynamically from SSDs to GPU devices’ memories via PCI-E fabric and applies on-the-fiy updates while processing graphs, thus reducing the amount of data movement required for computation. The detailed evaluations demonstrate that GFlow significantly outperforms most other competing out-of-core systems for a wide variety of graphs and algorithms under multi-GPUs environment, i.e., yields average speedups of 256X and 203X over CPU-based GraphChi and X-Stream respectively, and 1.3~2.5X speedup against GPU-based GraphReduce (single-GPU). Meanwhile, GFlow represents excellent scalability as we increase the number of GPUs in the node.
  • Related Articles

    [1]Zhou Quan, Chen Minhui, Wei Kaijun, Zheng Yulong. Traceable Attribute-Based Signature for SM9-Based Support Policy Hidden[J]. Journal of Computer Research and Development, 2025, 62(4): 1065-1074. DOI: 10.7544/issn1000-1239.202330744
    [2]Liu Yongzhi, Qin Guiyun, Liu Pengtao, Hu Chengyu, Guo Shanqing. Provably Secure Public Key Authenticated Encryption with Keyword Search Based on SGX[J]. Journal of Computer Research and Development, 2023, 60(12): 2709-2724. DOI: 10.7544/issn1000-1239.202220478
    [3]An Haoyang, He Debiao, Bao Zijian, Peng Cong, Luo Min. Ring Signature Based on the SM9 Digital Signature And Its Application in Blockchain Privacy Protection[J]. Journal of Computer Research and Development, 2023, 60(11): 2545-2554. DOI: 10.7544/issn1000-1239.202330265
    [4]Li Jiguo, Zhu Liufu, Liu Chengdong, Lu Yang, Han Jinguang, Wang Huaqun, Zhang Yichen. Provably Secure Traceable Attribute-Based Sanitizable Signature Scheme in the Standard Model[J]. Journal of Computer Research and Development, 2021, 58(10): 2253-2264. DOI: 10.7544/issn1000-1239.2021.20210669
    [5]Fu Wei, Wu Xiaoping, Ye Qing, Xiao Nong, Lu Xicheng. A Multiple Replica Possession Proving Scheme Based on Public Key Partition[J]. Journal of Computer Research and Development, 2015, 52(7): 1672-1681. DOI: 10.7544/issn1000-1239.2015.20140353
    [6]Ma Chunguang, Wang Jiuru, Wu Peng, Zhang Hua. M-IBE Based Key Management Protocol for Heterogeneous Sensor Networks[J]. Journal of Computer Research and Development, 2013, 50(10): 2109-2116.
    [7]Long Yu, Xu Xian, Chen Kefei. Two Identity Based Threshold Cryptosystem with Reduced Trust in PKG[J]. Journal of Computer Research and Development, 2012, 49(5): 932-938.
    [8]Ren Yongjun, Wang Jiandong, Xu Dazhuan, Zhuang Yi, Wang Jian. Key Agreement Protocol for Wireless Sensor Networks Using Self-Certified Public Key System[J]. Journal of Computer Research and Development, 2012, 49(2): 304-311.
    [9]Chen Shaozhen, Wang Wenqiang, Peng Shujuan. Efficient AttributeBased Ring Signature Schemes[J]. Journal of Computer Research and Development, 2010, 47(12).
    [10]Chen Huiyan, Wang Lianqiang, Lü Shuwang. A Study of Key Problems of HFE Cryptosystem[J]. Journal of Computer Research and Development, 2007, 44(7): 1205-1210.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return