• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Pan Fengfeng, Xiong Jin. NV-Shuffle: Shuffle Based on Non-Volatile Memory[J]. Journal of Computer Research and Development, 2018, 55(2): 229-245. DOI: 10.7544/issn1000-1239.2018.20170742
Citation: Pan Fengfeng, Xiong Jin. NV-Shuffle: Shuffle Based on Non-Volatile Memory[J]. Journal of Computer Research and Development, 2018, 55(2): 229-245. DOI: 10.7544/issn1000-1239.2018.20170742

NV-Shuffle: Shuffle Based on Non-Volatile Memory

More Information
  • Published Date: January 31, 2018
  • In the popular big data processing platforms like Spark, it is common to collect data in a many-to-many fashion during a stage traditionally known as the Shuffle phase. Data exchange happens across different types of tasks or stages via Shuffle phase. And during this phase, the data need to be transferred via network and persisted into traditional disk-based file system. Hence, the efficiency of Shuffle phase is one of the key factors in the performance of the big data processing. In order to reducing I/O overheads, we propose an optimized Shuffle strategy based on Non-Volatile Memory (NVM)—NV-Shuffle. Next-generation non-volatile memory (NVM) technologies, such as Phase Change Memory (PCM), Spin-Transfer Torque Magnetic Memories (STTMs) introduce new opportunities for reducing I/O overhead, due to their non-volatility, high read/write performance, low energy, etc. In the big data processing platform based on memory computing such as Spark, Shuffle data access based on disks is an important factor of application performance, NV-Shuffle uses NVM as persist memory to store Shuffle data and employs direct data accesses like memory by introducing NV-Buffer to organize data instead of traditional file system.We implemented NV-Shuffle in Spark. Our performance results show, NV-shuffle reduces job execution time by 10%~40% for Shuffle-heavy workloads.
  • Related Articles

    [1]Zhang Xuguang, Chen Mingkai, Wei Xin. Ubiquitous Video Transmission Scheduling Supported by Computing Power Network[J]. Journal of Computer Research and Development, 2023, 60(4): 786-796. DOI: 10.7544/issn1000-1239.202330005
    [2]Xiang Chaocan, Cheng Wenhui, Zhang Zhao, Jiao Xianlong, Qu Yuben, Chen Chao, Dai Haipeng. Intelligent Edge Computing-Empowered Adaptive Urban Traffic Sensing Data Recovery[J]. Journal of Computer Research and Development, 2023, 60(3): 619-634. DOI: 10.7544/issn1000-1239.202110962
    [3]Li Yin, Chen Yong, Zhao Jingxin, Yue Xinghui, Zheng Chen, Wu Yanjun, Wu Gaofei. Survey of Ubiquitous Computing Security[J]. Journal of Computer Research and Development, 2022, 59(5): 1054-1081. DOI: 10.7544/issn1000-1239.20211248
    [4]Wang Taochun, Jin Xin, Lü Chengmei, Chen Fulong, Zhao Chuanxin. Privacy Preservation Method of Data Aggregation in Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2020, 57(11): 2337-2347. DOI: 10.7544/issn1000-1239.2020.20190579
    [5]Jing Yao, Guo Bin, Chen Huihui, Yue Chaogang, Wang Zhu, Yu Zhiwen. CrowdTracker: Object Tracking Using Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2019, 56(2): 328-337. DOI: 10.7544/issn1000-1239.2019.20170808
    [6]Liu Jingjie, Nie Lei. Bayesian Current Disaggregation: Sensing the Current Waveforms of Household Appliances Using One Sensor[J]. Journal of Computer Research and Development, 2018, 55(3): 662-672. DOI: 10.7544/issn1000-1239.2018.20150311
    [7]Lin Xin, Li Shanping, Yang Zhaohui, Xu Jian. A Reasoning-Oriented Context Replacement Algorithm in Pervasive Computing[J]. Journal of Computer Research and Development, 2009, 46(4): 549-557.
    [8]Sun Peigang, Zhao Hai, Han Guangjie, Zhang Xiyuan, Zhu Jian. Chaos Triangle Compliant Location Reference Node Selection Algorithm[J]. Journal of Computer Research and Development, 2007, 44(12): 1987-1995.
    [9]Tang Lei, Liao Yuan, Li Mingshu, Huai Xiaoyong. The Dynamic Deployment Problem and the Algorithm of Service Component for Pervasive Computing[J]. Journal of Computer Research and Development, 2007, 44(5): 815-822.
    [10]Li Rui and Li Renfa. A Survey of Context-Aware Computing and Its System Infrastructure[J]. Journal of Computer Research and Development, 2007, 44(2): 269-276.

Catalog

    Article views (1219) PDF downloads (800) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return