• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Yongquan, Li Dongsheng. Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey[J]. Journal of Computer Research and Development, 2018, 55(3): 512-523. DOI: 10.7544/issn1000-1239.2018.20170793
Citation: Fu Yongquan, Li Dongsheng. Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey[J]. Journal of Computer Research and Development, 2018, 55(3): 512-523. DOI: 10.7544/issn1000-1239.2018.20170793

Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey

More Information
  • Published Date: February 28, 2018
  • The technical advancements of Internet, mobile computing and Internet of things (IoT) have been pushing the deep integration of human, machine and things, which fostered a lot of end-users oriented network search, online social networks, economical business, video surveillance and intelligent assistant tools, which are typically referred to as online data-intensive applications. These new applications are of large scale and sensitive to the service quality, requiring stringent latency performance. However, end-user requests traverse heterogeneous environments including edge network, wide-area network and the data center, which naturally incurs a long-tail latency issue that significantly degrades users’ experience quality. This paper surveys architectural characteristics of edge-computing applications, analyzes causes of the long-tail latency issue, categorizes key theories and methods of the network latency measurement, summarizes long-tail latency optimization techniques, and finally proposes the idea of constructing an online optimization runtime environment and discusses some open challenges.
  • Related Articles

    [1]Shang Jing, Wu Zhihui, Xiao Zhiwen, Zhang Yifei. Graph4Cache: A Graph Neural Network Model for Cache Prefetching[J]. Journal of Computer Research and Development, 2024, 61(8): 1945-1956. DOI: 10.7544/issn1000-1239.202440190
    [2]Zhang Tianming, Zhao Jie, Jin Lu, Chen Lu, Cao Bin, Fan Jing. Vertex Betweenness Centrality Computation Method over Temporal Graphs[J]. Journal of Computer Research and Development, 2023, 60(10): 2383-2393. DOI: 10.7544/issn1000-1239.202220650
    [3]Li Fengying, Shen Huiqiang, Dong Rongsheng. Compact Representation of Temporal Graphs Based on kd-MDD[J]. Journal of Computer Research and Development, 2022, 59(6): 1286-1296. DOI: 10.7544/issn1000-1239.20200856
    [4]Zhang Tianming, Xu Yiheng, Cai Xinwei, Fan Jing. A Shortest Path Query Method over Temporal Graphs[J]. Journal of Computer Research and Development, 2022, 59(2): 362-375. DOI: 10.7544/issn1000-1239.20210893
    [5]Zhang Heng, Zhang Libo, WuYanjun. Large-Scale Graph Processing on Multi-GPU Platforms[J]. Journal of Computer Research and Development, 2018, 55(2): 273-288. DOI: 10.7544/issn1000-1239.2018.20170697
    [6]Dong Rongsheng, Zhang Xinkai, Liu Huadong, Gu Tianlong. Representation and Operations Research of k\+2-MDD in Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2783-2792. DOI: 10.7544/issn1000-1239.2016.20160589
    [7]Yu Jing, Liu Yanbing, Zhang Yu, Liu Mengya, Tan Jianlong, Guo Li. Survey on Large-Scale Graph Pattern Matching[J]. Journal of Computer Research and Development, 2015, 52(2): 391-409. DOI: 10.7544/issn1000-1239.2015.20140188
    [8]Fu Lizhen, Meng Xiaofeng. Reachability Indexing for Large-Scale Graphs: Studies and Forecasts[J]. Journal of Computer Research and Development, 2015, 52(1): 116-129. DOI: 10.7544/issn1000-1239.2015.20131567
    [9]Zhong Ming, Wang Sheng, and Liu Mengchi. An Optimization Approach of Known-Item Search on Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2014, 51(1): 54-63.
    [10]Xu Shifeng, Gao Jun, Yang Dongqing, and Wang Tengjiao. Pass-Count-Based Path Query on Big Graph Datasets[J]. Journal of Computer Research and Development, 2010, 47(1): 96-103.
  • Cited by

    Periodical cited type(10)

    1. 刘晨曦,孙秉珍,楚晓丽,祁畅. 基于复合粗糙集的异构属性患者社区划分模型. 复杂系统与复杂性科学. 2023(03): 27-34 .
    2. 孙学良,王巍,黄俊恒,辛国栋,王佰玲. 基于标签传播的两阶段社区检测算法. 网络与信息安全学报. 2022(02): 139-149 .
    3. 郑文萍,乔艳超,杨贵. 基于局部邻域连通性的重叠社区发现算法. 山西大学学报(自然科学版). 2022(02): 369-379 .
    4. 张霄宏,史爱静,贾慧娟,任建吉. 一种优化的标签传播方法. 小型微型计算机系统. 2021(01): 137-141 .
    5. 郑文萍,刘美麟,穆俊芳,杨贵. 一种基于节点稳定性的社区发现算法. 南京大学学报(自然科学). 2021(01): 101-109 .
    6. 吴卫江,桑睿彤,郑艺峰. 基于限制性随机游走局部谱近似社区发现算法. 计算机工程与设计. 2021(09): 2472-2477 .
    7. 赵霞,张泽华,张晨威,李娴. RGNE:粗糙粒化的网络嵌入式重叠社区发现方法. 计算机研究与发展. 2020(06): 1302-1311 . 本站查看
    8. 闵磊. 基于社区发现的个性化推荐技术研究. 科技资讯. 2020(30): 217-218+225 .
    9. 郑文萍,岳香豆,杨贵. 基于随机游走的改进标签传播算法. 计算机应用. 2020(12): 3423-3429 .
    10. 凤丽洲,覃悦,杨贵军. 节点局部Fiedler向量中心性差值社区发现算法. 计算机科学与探索. 2019(12): 2029-2042 .

    Other cited types(27)

Catalog

    Article views (1884) PDF downloads (1115) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return