• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dong Xueshi, Dong Wenyong, Cai Yongle. Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2018, 55(11): 2372-2385. DOI: 10.7544/issn1000-1239.2018.20180009
Citation: Dong Xueshi, Dong Wenyong, Cai Yongle. Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2018, 55(11): 2372-2385. DOI: 10.7544/issn1000-1239.2018.20180009

Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem

More Information
  • Published Date: October 31, 2018
  • Based on colored traveling salesman problem (CTSP), this paper gives a more widely applicable combination optimization problem (COP) model named colored bottleneck traveling salesman problem (CBTSP), which can be used to model the planning problems with the partially overlapped workspace such as the route planning of persons and vehicles with cooperative and independent tasks. The objective function of these problems is different from the one of traveling salesman problems (TSPs), therefore it can’t be modeled by CTSP. Since CBTSP is NP-hard problem, for this kind of large scale problem, nature-inspired algorithms are good choice for solving it. Based on these, the paper proposes a nature-inspired algorithm to solve CBTSP, and the new algorithm named PSGA is a hybrid algorithm of particle swarm optimization (PSO), simulated annealing (SA) and genetic algorithm (GA) based on IT process. PSGA firstly uses dual-chromosome coding to generate solution of CBTSP, and then updates the solution by using the crossover operator of GA. During this process, the length of crossover is controlled by the activity intensity, which is affected by the particle radius and environment temperature. In order to test the effectiveness of PSGA algorithm, the paper makes experiments by using small scale to large scale CBTSP data, and the extensive experiments show that PSGA can demonstrate better solution quality than the compared algorithms.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [3]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [4]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [5]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [6]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [7]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [8]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [9]Fang Weiwei, Ren Jiang, Xia Hongke. Heterogeneous Distributed Linear Regression Privacy-Preserving Modeling[J]. Journal of Computer Research and Development, 2011, 48(9): 1685-1692.
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (1314) PDF downloads (460) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return