• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Weili, Zheng Zibin. Blockchain Data Analysis: A Review of Status, Trends and Challenges[J]. Journal of Computer Research and Development, 2018, 55(9): 1853-1870. DOI: 10.7544/issn1000-1239.2018.20180127
Citation: Chen Weili, Zheng Zibin. Blockchain Data Analysis: A Review of Status, Trends and Challenges[J]. Journal of Computer Research and Development, 2018, 55(9): 1853-1870. DOI: 10.7544/issn1000-1239.2018.20180127

Blockchain Data Analysis: A Review of Status, Trends and Challenges

More Information
  • Published Date: August 31, 2018
  • Blockchain technology is a new emerging technology that has the potential to revolutionize many traditional industries. Since the creation of Bitcoin, which represents blockchain 1.0, blockchain technology has been attracting extensive attention and a great amount of user transaction data has been accumulated. Furthermore, the birth of Ethereum, which represents blockchain 2.0, further enriches data type in blockchain. While the popularity of blockchain technology bringing about a lot of technical innovation, it also leads to many new problems, such as user privacy disclosure and illegal financial activities. However, the public accessible of blockchain data provides unprecedented opportunity for researchers to understand and resolve these problems through blockchain data analysis. Thus, it is of great significance to summarize the existing research problems, the results obtained, the possible research trends, and the challenges faced in blockchain data analysis. To this end, a comprehensive review and summary of the progress of blockchain data analysis is presented. The review begins by introducing the architecture and key techniques of blockchain technology and providing the main data types in blockchain with the corresponding analysis methods. Then, the current research progress in blockchain data analysis is summarized in seven research problems, which includes entity recognition, privacy disclosure risk analysis, network portrait, network visualization, market effect analysis, transaction pattern recognition, illegal behavior detection and analysis. Finally, the directions, prospects and challenges for future research are explored based on the shortcomings of current research.
  • Related Articles

    [1]Guo Yuhan, Liu Yongwu. Bimodal Cooperative Matching Algorithm for the Dynamic Ride-Sharing Problem[J]. Journal of Computer Research and Development, 2022, 59(7): 1533-1552. DOI: 10.7544/issn1000-1239.20210373
    [2]Jin Pengfei, Chang Xueqin, Fang Ziquan, Li Miao. Location-Aware Joint Influence Maximizaton in Geo-Social Networks Using Multi-Target Combinational Optimization[J]. Journal of Computer Research and Development, 2022, 59(2): 294-309. DOI: 10.7544/issn1000-1239.20210891
    [3]Yu Runlong, Zhao Hongke, Wang Zhong, Ye Yuyang, Zhang Peining, Liu Qi, Chen Enhong. Negatively Correlated Search with Asymmetry for Real-Parameter Optimization Problems[J]. Journal of Computer Research and Development, 2019, 56(8): 1746-1757. DOI: 10.7544/issn1000-1239.2019.20190198
    [4]Fu Yiqi, Dong Wei, Yin Liangze, Du Yuqing. Software Defect Prediction Model Based on the Combination of Machine Learning Algorithms[J]. Journal of Computer Research and Development, 2017, 54(3): 633-641. DOI: 10.7544/issn1000-1239.2017.20151052
    [5]Wang Bin. A Discrete Particle Swarm Optimization-based Algorithm for Polygonal Approximation of Digital Curves[J]. Journal of Computer Research and Development, 2010, 47(11): 1886-1892.
    [6]Fan Xiaoqin, Jiang Changjun, Fang Xianwen, Ding Zhijun. Dynamic Web Service Selection Based on Discrete Particle Swarm Optimization[J]. Journal of Computer Research and Development, 2010, 47(1): 147-156.
    [7]Li Xin, Huang Xuanjing, and Wu Lide. Combined Multiple Classifiers Based on TBL Algorithm and Their Application in Question Classification[J]. Journal of Computer Research and Development, 2008, 45(3): 535-541.
    [8]Li Heng, Zhu Jingbo, and Yao Tianshun. Combined Multiple Classifiers Based on a Stacking Algorithm and Their Application to Chinese Text Chunking[J]. Journal of Computer Research and Development, 2005, 42(5): 844-848.
    [9]Zeng Liping and Huang Wenqi. A New Local Search Algorithm for the Job Shop Scheduling Problem[J]. Journal of Computer Research and Development, 2005, 42(4): 582-587.
    [10]Zhao Wenbo, Wang Liming, Huang Deshuang. Structure Optimization of Radial Basis Probabilistic Neural Networks by the Maximum Absolute Error Combined with the Micro-Genetic Algorithm[J]. Journal of Computer Research and Development, 2005, 42(2): 179-187.
  • Cited by

    Periodical cited type(3)

    1. 黄阳,周旭,杨志邦,余婷,张吉,曾源远,李肯立. 基于缓存的时变道路网最短路径查询算法. 计算机研究与发展. 2022(02): 376-389 . 本站查看
    2. 李永刚. 基于云计算的数据信息加密安全存储仿真研究. 电子设计工程. 2021(11): 132-135 .
    3. 刘铎,杨涓,谭玉娟. 边缘存储的发展现状与挑战. 中兴通讯技术. 2019(03): 15-22 .

    Other cited types(7)

Catalog

    Article views (7244) PDF downloads (3937) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return