• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Yingying, Ma Shuai, Jiang Haoyi, Liu Zhe, Hu Chunming, Li Xiong. An Approach for Storytelling by Correlating Events from Social Networks[J]. Journal of Computer Research and Development, 2018, 55(9): 1972-1986. DOI: 10.7544/issn1000-1239.2018.20180155
Citation: Li Yingying, Ma Shuai, Jiang Haoyi, Liu Zhe, Hu Chunming, Li Xiong. An Approach for Storytelling by Correlating Events from Social Networks[J]. Journal of Computer Research and Development, 2018, 55(9): 1972-1986. DOI: 10.7544/issn1000-1239.2018.20180155

An Approach for Storytelling by Correlating Events from Social Networks

More Information
  • Published Date: August 31, 2018
  • Social networks, such as Twitter and Sina weibo, have become popular platforms to report the public event. They provide valuable data for us to monitor events and their evolution. However, informal words and fragmented texts make it challenging to extract descriptive information. Monitoring the event progression from fast accumulation of microblogs is also difficult. To this end, we monitor the event progression with a common topic from the social network. This can help us to gain an overview and a detailed documentation of the events. In this paper, we use three consecutive components to meet this end. First, we use a structure based approach to detect events from the microblog dataset. Second, we cluster the events by their topics based on their latent semantic information, and define each cluster as a story. Third, we use a graph based approach to generate a storyline for each story. The storyline is denoted by a directed acyclic graph (DAG) with a summary to express the progression of events in the story. The user experience evaluation indicates that this method can help us to monitor events and their progression by achieving improved accuracy and comprehension compared with the state of art methods.
  • Related Articles

    [1]Zheng Zhi, Xu Tong, Qin Chuan, Liao Xiangwen, Zheng Yi, Liu Tongzhu, Tong Guixian. Multi-Source Contextual Collaborative Recommendation for Medicine[J]. Journal of Computer Research and Development, 2020, 57(8): 1741-1754. DOI: 10.7544/issn1000-1239.2020.20200149
    [2]Yu Yaxin, Liu Meng, Zhang Hongyu. Research on User Behavior Understanding and Personalized Service Recommendation Algorithm in Twitter Social Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1369-1380. DOI: 10.7544/issn1000-1239.2020.20190158
    [3]Du Yumeng, Zhang Weinan, Liu Ting. Topic Augmented Convolutional Neural Network for User Interest Recognition[J]. Journal of Computer Research and Development, 2018, 55(1): 188-197. DOI: 10.7544/issn1000-1239.2018.20160892
    [4]Pan Xiaoyan, Lou Zhengzheng, Ji Bo, Ye Yangdong. Interpretable Clustering with Multi-View Generative Model[J]. Journal of Computer Research and Development, 2017, 54(8): 1713-1723. DOI: 10.7544/issn1000-1239.2017.20170175
    [5]Li Quangang, Liu Qiao, Qin Zhiguang. Modeling and Simulation of Communication Network Based on Topic Model[J]. Journal of Computer Research and Development, 2016, 53(1): 206-215. DOI: 10.7544/issn1000-1239.2016.20148120
    [6]Peng Min, Huang Jiajia, Zhu Jiahui, Huang Jimin, Liu Jiping. Mass of Short Texts Clustering and Topic Extraction Based on Frequent Itemsets[J]. Journal of Computer Research and Development, 2015, 52(9): 1941-1953. DOI: 10.7544/issn1000-1239.2015.20140533
    [7]Tan Wentang, Wang Zhenwen, Yin Fengjing, Ge Bin, and Xiao Weidong. A Partial Comparative Cross Collections LDA Model[J]. Journal of Computer Research and Development, 2013, 50(9): 1943-1953.
    [8]Han Xiaohui, Ma Jun, Shao Haimin, and Xue Ran. An LDA Based Approach to Detect the Low-Quality Reply Posts in Web Forums[J]. Journal of Computer Research and Development, 2012, 49(9): 1937-1946.
    [9]Wu Youzheng, Zhao Jun and Xu Bo. Sentence Retrieval with a Topic-Based Language Model[J]. Journal of Computer Research and Development, 2007, 44(2): 288-295.
    [10]Duan Jiangjiao, Xue Yongsheng, Lin Ziyu, Wang Wei, Shi Baile. A Novel Hidden Markov Model-Based Hierarchical Time-Series Clustering Algorithm[J]. Journal of Computer Research and Development, 2006, 43(1): 61-67.
  • Cited by

    Periodical cited type(13)

    1. 孟令伍,贺成龙,顾学海,丁灿. 基于BERTopic模型的网络舆情事件热门话题追踪. 网络安全技术与应用. 2025(02): 29-36 .
    2. 杨京虎,段亮,岳昆,李忠斌. 基于子事件的对话长文本情感分析. 南京大学学报(自然科学). 2023(03): 483-493 .
    3. 刘东,林川,任丽娜,黄瑞章. 面向热点新闻事件的层次化故事脉络生成方法. 计算机应用. 2023(08): 2376-2381 .
    4. 翟利志,李睿祥,杨佳贝,饶元,张岐坦,周云. 基于复合语义特征的事件图谱构建技术研究进展. 计算机科学. 2023(09): 242-259 .
    5. 马子娟,岳昆,段亮,赵天资. 基于在线Biterm主题模型的舆情新闻事件跟踪. 计算机工程与应用. 2022(22): 132-141 .
    6. 樊笑冰,饶元,王硕,李睿祥,刘旭辉. 基于命名实体敏感的分层新闻故事线生成方法. 中文信息学报. 2021(01): 113-124 .
    7. 赵天资,段亮,岳昆,乔少杰,马子娟. 基于Biterm主题模型的新闻线索生成方法. 数据分析与知识发现. 2021(02): 1-13 .
    8. 王崇伟,赵旭剑. 面向新浪微博的故事脉络生成系统. 西南科技大学学报. 2021(03): 60-65 .
    9. 赵旭剑,王崇伟. 基于图卷积网络的微博新闻故事线抽取方法. 计算机应用. 2021(11): 3139-3144 .
    10. 赵旭剑,王崇伟,金培权,张晖,杨春明,李波. 面向Web的故事脉络挖掘研究综述. 中文信息学报. 2021(11): 13-33 .
    11. 陈黎明,黄瑞章,秦永彬,陈艳平. 面向新闻事件的故事树构建方法. 计算机工程与设计. 2020(07): 1910-1919 .
    12. 蒋伟进,王扬,刘晓亮,吕斯健. 基于词相关性特征的多归属谱聚类突发事件检测. 通信学报. 2020(12): 193-204 .
    13. 张晨昕,饶元,樊笑冰,王硕. 基于社交媒体的事件脉络挖掘研究进展. 中文信息学报. 2019(11): 15-30 .

    Other cited types(16)

Catalog

    Article views (1401) PDF downloads (458) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return