• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Haitao, Li Zhanhuai, Zhang Xiao, Bu Hailong, Kong Lanxin, Zhao Xiaonan. Virtual Machine Resources Allocation Methods Based on History Data[J]. Journal of Computer Research and Development, 2019, 56(4): 779-789. DOI: 10.7544/issn1000-1239.2019.20170831
Citation: Wang Haitao, Li Zhanhuai, Zhang Xiao, Bu Hailong, Kong Lanxin, Zhao Xiaonan. Virtual Machine Resources Allocation Methods Based on History Data[J]. Journal of Computer Research and Development, 2019, 56(4): 779-789. DOI: 10.7544/issn1000-1239.2019.20170831

Virtual Machine Resources Allocation Methods Based on History Data

More Information
  • Published Date: March 31, 2019
  • Virtualization technology is widely used in cloud datacenters to realize on-demand resources allocation so as to lower operating costs. Moreover, the technology can also improve the flexibility and scalability of datacenters. Despite various merits, these features of virtualization technology also introduce an issue about how to allocate the virtual machines to make the best of physical resources while reducing the resource collision rate in the meantime. To this end, this paper proposes two resource allocation methods for virtual machines based on statistical analysis of history data. Combined with commonly-used placement strategies, these two methods are more effective compared with some state-of-art virtual machine resource allocation methods. In addition, existing independent indicators are incomplete to reflect the overall effectiveness of allocation methods. In order to solve the issue, this paper also proposes an integrated effectiveness indicator which combines different indicators from three separate aspects including the number of consumed physical machines, resource utilization and resource collision of physical machines to evaluate the effectiveness of allocation schemes. In the end, through tests of realistic cloud computing overhead, we prove that the proposed allocation methods of virtual machines are superior to common methods, and the integrated effectiveness indicator can reasonably evaluate the overall effectiveness of virtual machine allocation schemes.
  • Cited by

    Periodical cited type(9)

    1. 贺冠博,张鹏,邓卓茗,黄承速,冯淞耀. 基于业务牵引的电网企业IT资源精细化管理研究. 企业改革与管理. 2025(03): 160-162 .
    2. 刘帅帅,姜春茂. 能耗感知下云资源三支粒度调度策略研究. 计算机应用研究. 2023(03): 810-815 .
    3. 周杨. 基于云桌面技术的高校同声传译语音室远程控制方法. 信息技术. 2023(06): 113-118 .
    4. 张胜昌,赵良昆,苏学娟. 基于鸟群算法的医院数据中心虚拟化资源分配方法. 自动化技术与应用. 2023(08): 92-95 .
    5. 周杨,刘婷. NewClass数字语言实验室的云桌面系统设计. 信息技术. 2022(07): 103-108 .
    6. 杨傲,马春苗,伍卫国,王思敏,赵坤. 一种面向数据中心的能耗感知虚拟机放置策略. 西安电子科技大学学报. 2022(05): 145-153 .
    7. 罗泽鹏,蒋运承,胡致杰. 云计算虚拟资源增强型多点安全传输仿真. 计算机仿真. 2021(01): 158-161+166 .
    8. 陈雪娟,邵亚丽. 面向云计算数据中心的弹性资源分配算法. 计算机仿真. 2021(01): 217-220+235 .
    9. 房明磊,耿显亚. 基于云计算的大数据中心资源分配方法研究. 廊坊师范学院学报(自然科学版). 2021(02): 10-13 .

    Other cited types(13)

Catalog

    Article views (1132) PDF downloads (374) Cited by(22)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return