• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Haitao, Li Zhanhuai, Zhang Xiao, Bu Hailong, Kong Lanxin, Zhao Xiaonan. Virtual Machine Resources Allocation Methods Based on History Data[J]. Journal of Computer Research and Development, 2019, 56(4): 779-789. DOI: 10.7544/issn1000-1239.2019.20170831
Citation: Wang Haitao, Li Zhanhuai, Zhang Xiao, Bu Hailong, Kong Lanxin, Zhao Xiaonan. Virtual Machine Resources Allocation Methods Based on History Data[J]. Journal of Computer Research and Development, 2019, 56(4): 779-789. DOI: 10.7544/issn1000-1239.2019.20170831

Virtual Machine Resources Allocation Methods Based on History Data

More Information
  • Published Date: March 31, 2019
  • Virtualization technology is widely used in cloud datacenters to realize on-demand resources allocation so as to lower operating costs. Moreover, the technology can also improve the flexibility and scalability of datacenters. Despite various merits, these features of virtualization technology also introduce an issue about how to allocate the virtual machines to make the best of physical resources while reducing the resource collision rate in the meantime. To this end, this paper proposes two resource allocation methods for virtual machines based on statistical analysis of history data. Combined with commonly-used placement strategies, these two methods are more effective compared with some state-of-art virtual machine resource allocation methods. In addition, existing independent indicators are incomplete to reflect the overall effectiveness of allocation methods. In order to solve the issue, this paper also proposes an integrated effectiveness indicator which combines different indicators from three separate aspects including the number of consumed physical machines, resource utilization and resource collision of physical machines to evaluate the effectiveness of allocation schemes. In the end, through tests of realistic cloud computing overhead, we prove that the proposed allocation methods of virtual machines are superior to common methods, and the integrated effectiveness indicator can reasonably evaluate the overall effectiveness of virtual machine allocation schemes.
  • Related Articles

    [1]Cui Chaoyuan, Li Yonggang, Wu Yun, Wang Licheng. A Memory Forensic Method Based on Hidden Event Trigger Mechanism[J]. Journal of Computer Research and Development, 2018, 55(10): 2278-2290. DOI: 10.7544/issn1000-1239.2018.20180405
    [2]Yi Peng, Zhou Qiao, Men Haosong. Dynamic Social Network Community Detection Algorithm Based on Hidden Markov Model[J]. Journal of Computer Research and Development, 2017, 54(11): 2611-2619. DOI: 10.7544/issn1000-1239.2017.20160741
    [3]Tang Wanning, Wang Mingwen, Wan Jianyi. Markov Network Retrieval Model Based on Document Cliques[J]. Journal of Computer Research and Development, 2014, 51(10): 2248-2254. DOI: 10.7544/issn1000-1239.2014.20130343
    [4]Jiang Changhao, Zhang Min, Gao Bin, Liu Yiqun, Ma Shaoping. Advertiser Status Modeling in Sponsored Search[J]. Journal of Computer Research and Development, 2013, 50(12): 2621-2628.
    [5]Wu Caihua, Liu Juntao, Peng Shirui, Li Haihong. Deriving Markov Chain Usage Model from UML Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1811-1819.
    [6]Zhang Zhan, Liu Guangjie, Dai Yuewei, Wang Zhiquan. A Self-Adaptive Image Steganography Algorithm Based on Cover-Coding and Markov Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1668-1675.
    [7]Dong Hao, Liu Yuanning, Zhang Hao, Wang Gang. A Method of RNA Secondary Structure Prediction Based on Hidden Markov Model[J]. Journal of Computer Research and Development, 2012, 49(4): 812-817.
    [8]Zhao Jing, Huang Houkuan, and Tian Shengfeng. Protocol Anomaly Detection Based on Hidden Markov Model[J]. Journal of Computer Research and Development, 2010, 47(4): 621-627.
    [9]Wang Junwen, Liu Guangjie, Dai Yuewei, Zhang Zhan, and Wang Zhiquan. Image Forensics for Blur Detection Based on Nonsubsampled Contourlet Transform[J]. Journal of Computer Research and Development, 2009, 46(9): 1549-1555.
    [10]Duan Jiangjiao, Xue Yongsheng, Lin Ziyu, Wang Wei, Shi Baile. A Novel Hidden Markov Model-Based Hierarchical Time-Series Clustering Algorithm[J]. Journal of Computer Research and Development, 2006, 43(1): 61-67.

Catalog

    Article views (1132) PDF downloads (374) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return