• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Guo Binglei, Yu Jiong, Yang Dexian, Liao Bin. Energy Modeling and Plan Evaluation for Queries in Relational Databases[J]. Journal of Computer Research and Development, 2019, 56(4): 810-824. DOI: 10.7544/issn1000-1239.2019.20180138
Citation: Guo Binglei, Yu Jiong, Yang Dexian, Liao Bin. Energy Modeling and Plan Evaluation for Queries in Relational Databases[J]. Journal of Computer Research and Development, 2019, 56(4): 810-824. DOI: 10.7544/issn1000-1239.2019.20180138

Energy Modeling and Plan Evaluation for Queries in Relational Databases

More Information
  • Published Date: March 31, 2019
  • In relational database systems, the original policy model of the query optimizer ignores energy consumption and only concentrates on improving performance when selecting execution plans for queries. As a consequence, this kind of plan selection strategy will limit the energy-saving penitential of future database systems. Firstly, an energy model for query plans is proposed based on the resource consumption characteristics of queries (i.e., CPU instructions, disk block reads, and memory block reads). The energy model can predict energy cost for plans before query execution and hence laid a foundation for the optimizer to select energy-efficient plans in the decision-making phase. Secondly, to enable the optimizer to regulate the weight of power and performance in the total cost of each query plan, a query-plan evaluation model is proposed. According to a specific requirement of users, the evaluation model can change the optimization goal (performance, power, and energy) of each query and select the best execution plan for a certain query. Experimental results show that the average prediction accuracy of the energy model is 95.68%, the power savings range from 8.95% to 29.25% for the optimization goal of power, and the energy savings range from 3.62% to 11.34% for the optimization goal of energy.
  • Related Articles

    [1]Wei Zheng, Dou Yu, Gao Yanzhen, Ma Jie, Sun Ninghui, Xing Jing. A Consistent Hash Data Placement Algorithm Based on Stripe[J]. Journal of Computer Research and Development, 2021, 58(4): 888-903. DOI: 10.7544/issn1000-1239.2021.20190732
    [2]Zhang Jiaying, Wang Qi, Zhang Zhixing, Ruan Tong, Zhang Huanhuan, He Ping. Lab Indicator Standardization in a Regional Medical Health Platform[J]. Journal of Computer Research and Development, 2019, 56(9): 1897-1906. DOI: 10.7544/issn1000-1239.2019.20180729
    [3]Xu Qingui, Qin Yong, Yang Taolan. Light-Weight Integrity Monitoring Based on Hashing Time Validity[J]. Journal of Computer Research and Development, 2015, 52(3): 702-717. DOI: 10.7544/issn1000-1239.2015.20131382
    [4]Ouyang Jia, Yin Jian, Liu Shaopeng, Liu Yubao. An Effective Differential Privacy Transaction Data Publication Strategy[J]. Journal of Computer Research and Development, 2014, 51(10): 2195-2205. DOI: 10.7544/issn1000-1239.2014.20130824
    [5]Yuan Chunyang, Xu Junfeng, Zhu Chunge. A Trusted Recovery Model for Assurance of Integrity Policy Validity[J]. Journal of Computer Research and Development, 2014, 51(2): 360-372.
    [6]Zheng Jinhua, Li Ke, Li Miqing, and Wen Shihua. Adaptive Neighbor Multi-Objective Evolutionary Algorithm Based on Hypervolume Indicator[J]. Journal of Computer Research and Development, 2012, 49(2): 312-326.
    [7]Fu Zhongliang. Effective Property and Best Combination of Classifier Linear Combination[J]. Journal of Computer Research and Development, 2009, 46(7): 1206-1216.
    [8]Fu Zhongliang. Effectiveness Analysis of AdaBoost[J]. Journal of Computer Research and Development, 2008, 45(10): 1747-1755.
    [9]Ding Zhiming, Han Jingyu, Li Man, and Yu Bo. Network-Constrained Moving Objects Database Based Traffic Flow Statistical Analysis Model[J]. Journal of Computer Research and Development, 2008, 45(4): 646-655.
    [10]Zhao Liang, Wang Jianmin, Sun Jiaguang. A Study of Software Test Criterion Effectiveness Measure[J]. Journal of Computer Research and Development, 2006, 43(8): 1457-1463.
  • Cited by

    Periodical cited type(8)

    1. 刘杨,汪伦,沈鑫. 基于SDN服务链安全资源池的园区网出口方案设计. 现代信息科技. 2025(01): 115-119 .
    2. 张正昌. 云取证的学理反思与制度调适. 财经法学. 2025(02): 174-189 .
    3. 陈培欣,罗志娟. 基于区块链的云取证方案. 网络安全技术与应用. 2024(03): 124-126 .
    4. 丁丽萍,杜漠,黄昭颖,肖炯恩. 基于人工智能与区块链技术融合的端到云智慧执法平台. 警察技术. 2022(01): 62-69 .
    5. 吕锋. 云平台下入侵人员位置实时监测方法研究. 计算技术与自动化. 2022(02): 29-33 .
    6. 陈葳葳,曹利,顾翔. 基于区块链的车联网电子取证模型. 计算机应用. 2021(07): 1989-1995 .
    7. 唐寅,何嘉. 基于软件定义的安全功能服务链部署方法. 计算机工程与设计. 2021(11): 3052-3058 .
    8. 李嘉鑫,马征兆,张叶舟,唐远新,翟继强. 基于云取证的轻量级虚拟机监视器设计. 计算机与网络. 2020(23): 61-64 .

    Other cited types(4)

Catalog

    Article views (956) PDF downloads (275) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return