• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Xiong, Dong Yihong, Shi Weijie, Pan Jianfei. Progress and Challenges of Graph Summarization Techniques[J]. Journal of Computer Research and Development, 2019, 56(6): 1338-1355. DOI: 10.7544/issn1000-1239.2019.20180371
Citation: Wang Xiong, Dong Yihong, Shi Weijie, Pan Jianfei. Progress and Challenges of Graph Summarization Techniques[J]. Journal of Computer Research and Development, 2019, 56(6): 1338-1355. DOI: 10.7544/issn1000-1239.2019.20180371

Progress and Challenges of Graph Summarization Techniques

Funds: This work was supported by the National Natural Science Foundation of China (61572266), the Natural Science Foundation of Zhejiang Province of China (LY16F020003), and the Natural Science Foundation of Ningbo City of China (2017A610114).
More Information
  • Published Date: May 31, 2019
  • Graph summarization aims to search a group of simple hypergraphs or sparse graphs, which illustrate the main structural information or change trend of the original graph. Based on the application field and background of original graph, different graph summarization techniques are used to construct a specific summary graph, which can solve the problems of information overload, query optimization, spatial compression, impact analysis, social network visualization and so on. According to the classification criteria of the main purpose of the summary, the existing graph summarization techniques are divided into four categories: the graph summarization based on spatial compression, the graph summarization based on query optimization, the graph summarization based on pattern visualization and the graph summarization based on impact analysis. The partial graph summarization algorithms of non-attribute graphs and attribute graphs are tested on real data sets to analyze the indexes of information retention rate, compression rate, information entropy and running time experimentally. At last, not only the development trends of the graph summarization are highlighted, but also the challenges and the future research directions that can be explored in depth are pointed out. Combining with the popular deep learning technology, some valuable and potential Macro coutermeasures are put forward to solve these challenges.
  • Related Articles

    [1]He Xianmin, Li Maoxi, He Yanqing. Siamese BERT-Networks Based Classification Mapping of Scientific and Technological Literature[J]. Journal of Computer Research and Development, 2021, 58(8): 1751-1760. DOI: 10.7544/issn1000-1239.2021.20210323
    [2]Liu Zihao, Zhang Bin, Zhu Ning, Tang Huilin. Adaptive App-DDoS Detection Method Based on Improved AP Algorithm[J]. Journal of Computer Research and Development, 2018, 55(6): 1236-1246. DOI: 10.7544/issn1000-1239.2018.20170124
    [3]Zhou Quanbiao, Zhang Xingjun, Liang Ningjing, Huo Wenjie, Dong Xiaoshe. FTL Address Mapping Method Based on Mapping Entry Inter-Reference Recency[J]. Journal of Computer Research and Development, 2018, 55(5): 1065-1077. DOI: 10.7544/issn1000-1239.2018.20170254
    [4]Wang Yizhuo, Zuo Qi, Ji Weixing, Wang Xiaojun, Shi Feng. Memory-Aware Incremental Mapping of Applications to MPSoC[J]. Journal of Computer Research and Development, 2015, 52(5): 1198-1209. DOI: 10.7544/issn1000-1239.2015.20131960
    [5]Zhu Hong, Ding Shifei, Xu Xinzheng. An AP Clustering Algorithm of Fine-Grain Parallelism Based on Improved Attribute Reduction[J]. Journal of Computer Research and Development, 2012, 49(12): 2638-2644.
    [6]Zuo Yayao, Tang Yong, Shu Zhongmei. Subtraction Operation between Temporal Points with Granularities Based on Granularity Hierarchy Mapping[J]. Journal of Computer Research and Development, 2012, 49(11): 2320-2327.
    [7]Zhu Sifeng, Liu Fang, Chai Zhengyi, Qi Yutao. Immune-Computing-Based Location Planning of Base Station and Relay Station in IEEE 802.16j Network[J]. Journal of Computer Research and Development, 2012, 49(8): 1649-1654.
    [8]Li Xiaoling, Guo Changguo, Li Xiaoyong, Wang Huaimin. A Constraint Optimization Based Mapping Method for Virtual Network[J]. Journal of Computer Research and Development, 2012, 49(8): 1601-1610.
    [9]Cao Chunjie, Yang Chao, Ma Jianfeng, Zhu Jianming. An Authentication Protocol for Station Roaming in WLAN Mesh[J]. Journal of Computer Research and Development, 2009, 46(7): 1102-1109.
    [10]Yang Renzhong, Hou Zifeng, Li Jingxia. A Resource Reservation Scheme for PCF Handoff Station in WLAN[J]. Journal of Computer Research and Development, 2005, 42(11): 1962-1968.
  • Cited by

    Periodical cited type(9)

    1. 傅培旺 ,丁红发 ,刘海 ,蒋合领 ,唐明丽 ,于莹莹 . 基于本地差分隐私的分布式图统计采集算法. 计算机研究与发展. 2024(07): 1643-1669 . 本站查看
    2. 李可佳,胡学先,陈越,杨鸿健,徐阳,刘扬. 基于主成分分析和函数机制的差分隐私线性回归算法. 计算机科学. 2023(08): 342-351 .
    3. 孙涛,李晓会,李晗,赵雪. 一种面向图数据的AWG-LDP局部差分隐私保护算法研究. 计算机应用研究. 2023(08): 2467-2472+2500 .
    4. 丁红发,傅培旺,彭长根,龙士工,吴宁博. 混洗差分隐私保护的度分布直方图发布算法. 西安电子科技大学学报. 2023(06): 219-236 .
    5. 李恒春,樊伟麟,孟宁,兰秋军. 符合差分隐私的流数据统计直方图发布. 湘潭大学学报(自然科学版). 2022(02): 72-79 .
    6. 贾俊杰,陈慧,马慧芳,牟玉祥. 差分隐私的查询一致性约束研究. 计算机工程与科学. 2020(01): 71-79 .
    7. 彭长根,赵园园,樊玫玫. 基于最大信息系数的主成分分析差分隐私数据发布算法. 信息网络安全. 2020(02): 37-48 .
    8. 丰霏,陈天翔. “推测信息”的权利属性及其法律规制. 人权研究(辑刊). 2020(01): 195-222+569 .
    9. 林子杰,张宇轩,刘文芬,胡学先. 点差分隐私下基于度序列的图生成模型. 信息工程大学学报. 2020(06): 680-688 .

    Other cited types(16)

Catalog

    Article views (1433) PDF downloads (701) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return