• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Huang Tiejun, Yu Zhaofei, Liu Yijun. Brain-like Machine: Thought and Architecture[J]. Journal of Computer Research and Development, 2019, 56(6): 1135-1148. DOI: 10.7544/issn1000-1239.2019.20190240
Citation: Huang Tiejun, Yu Zhaofei, Liu Yijun. Brain-like Machine: Thought and Architecture[J]. Journal of Computer Research and Development, 2019, 56(6): 1135-1148. DOI: 10.7544/issn1000-1239.2019.20190240

Brain-like Machine: Thought and Architecture

Funds: This work was supported by the National Natural Science Foundation of China (61425025) and the Key Research and Development Program of Guangdong Province (2018B030338001).
More Information
  • Published Date: May 31, 2019
  • The theoretical limitation of the classical computing machinery, including all the computers with von Neumann architecture, was defined by Alan Turing in 1936. Owing to lack of the hardware neuromorphic devices, neural networks have been implemented with computers to realize artificial intelligence for decades. However, the von Neumann architecture doesn’t match with the asynchronous parallel structure and communication mechanism of the neural networks, with consequences such as huge power consumption. To develop the neural network oriented architecture for artificial intelligence and common information processing is an important direction for architecture research. Brain-like machine is an intelligent machine which is constructed with neuromorphic devices according to the structure of biological neural network, and is better on spatio-temporal information processing than classic computer. The idea of brain-like machine had been proposed before the invention of computer. The research and development practice has been carried out for more than three decades. As one of the several brain-like systems being in operation, SpiNNaker focuses on the research on the architecture of brain-like systems with an effective brain-like scheme. In the next 20 years or so, it is expected that the detailed analysis of model animal brain and human brain will be completed step by step, and the neuromorphic devices and integrated processes will be gradually mature, and the brain-like machine with structure close to the brain and performance far beyond the brain is expected to be realized. As a kind of spiking neural networks, and with neuromorphic devices which behavior is true random, the brain-like machine can emerge abundant nonlinear dynamic behaviors. It had been proven that any Turing machine can be constructed with spiking neural network. Whether the brain-like machine can transcend the theoretical limitation of the Turing machine? This is a big open problem to break through.
  • Related Articles

    [1]Zhao Xingwang, Zhang Yaopu, Liang Jiye. Two-Stage Ensemble-Based Community Discovery Algorithm in Multilayer Networks[J]. Journal of Computer Research and Development, 2023, 60(12): 2832-2843. DOI: 10.7544/issn1000-1239.202220214
    [2]Zhao Xia, Zhang Zehua, Zhang Chenwei, Li Xian. RGNE:A Network Embedding Method for Overlapping Community Detection Based on Rough Granulation[J]. Journal of Computer Research and Development, 2020, 57(6): 1302-1311. DOI: 10.7544/issn1000-1239.2020.20190572
    [3]Zheng Wenping, Che Chenhao, Qian Yuhua, Wang Jie. A Two-Stage Community Detection Algorithm Based on Label Propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 1959-1971. DOI: 10.7544/issn1000-1239.2018.20180277
    [4]Du Hangyuan, Wang Wenjian, Bai Liang. An Overlapping Community Detection Algorithm Based on Centrality Measurement of Network Node[J]. Journal of Computer Research and Development, 2018, 55(8): 1619-1630. DOI: 10.7544/issn1000-1239.2018.20180187
    [5]Liu Yao, Kang Xiaohui, Gao Hong, Liu Qiao, Wu Zufeng, Qin Zhiguang. A Community Detecting Method Based on the Node Intimacy and Degree in Social Network[J]. Journal of Computer Research and Development, 2015, 52(10): 2363-2372. DOI: 10.7544/issn1000-1239.2015.20150407
    [6]Xin Yu, Yang Jing, Xie Zhiqiang. A Semantic Overlapping Community Detecting Algorithm in Social Networks Based on Random Walk[J]. Journal of Computer Research and Development, 2015, 52(2): 499-511. DOI: 10.7544/issn1000-1239.2015.20131246
    [7]Sun Yifan, Li Sai. Similarity-Based Community Detection in Social Network of Microblog[J]. Journal of Computer Research and Development, 2014, 51(12): 2797-2807. DOI: 10.7544/issn1000-1239.2014.20131209
    [8]Zhu Mu, Meng Fanrong, and Zhou Yong. Density-Based Link Clustering Algorithm for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2013, 50(12): 2520-2530.
    [9]Deng Xiaolong, Wang Bai, Wu Bin, and Yang Shengqi. Modularity Modeling and Evaluation in Community Detecting of Complex Network Based on Information Entropy[J]. Journal of Computer Research and Development, 2012, 49(4): 725-734.
    [10]Lin Youfang, Wang Tianyu, Tang Rui, Zhou Yuanwei, Huang Houkuan. An Effective Model and Algorithm for Community Detection in Social Networks[J]. Journal of Computer Research and Development, 2012, 49(2): 337-345.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return