• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yang Guoqiang, Ding Hangchao, Zou Jing, Jiang Han, Chen Yanqin. A Big Data Security Scheme Based on High-Performance Cryptography Implementation[J]. Journal of Computer Research and Development, 2019, 56(10): 2207-2215. DOI: 10.7544/issn1000-1239.2019.20190390
Citation: Yang Guoqiang, Ding Hangchao, Zou Jing, Jiang Han, Chen Yanqin. A Big Data Security Scheme Based on High-Performance Cryptography Implementation[J]. Journal of Computer Research and Development, 2019, 56(10): 2207-2215. DOI: 10.7544/issn1000-1239.2019.20190390

A Big Data Security Scheme Based on High-Performance Cryptography Implementation

More Information
  • Published Date: September 30, 2019
  • At present, the trend of information technology development is the artificial intelligence technology based on big data computing. Although it has made enormous contribution in the economic development, big data processing technology which includes cloud computing, fog computing, edge computing and other computing modes also brings a great risk of data security. Cryptographic technology is the kernel of the big data security. Confidentiality, authentication and privacy protection of big data need to solve the following three security problems: firstly, high-speed encryption and decryption of massive data; secondly, the authentication problem of high concurrency and large scale user; thirdly, privacy protection in data mining. The solution of these problems requires the fast implementation of the underlying cryptographic algorithm. Aiming at the logic architecture of big data security application, this paper gives a fast calculation algorithm for the cryptographic standard algorithm SM4-XTS, SM2 and modular exponentiation of large integers. It is verified on the KC705 development board based on Xilinx company, the results of experiment show that our work has certain advancement: 1) The implementation of SM4-XTS fills the blank of this direction in China. 2) SM2 signature has high performance, leading domestic similar products. 3) Modular exponentiation is applied to the productization of homomorphism cryptography, and its performance is ahead of other similar products.
  • Related Articles

    [1]Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847
    [2]Shen Bilong, Zhao Ying, Huang Yan, Zheng Weimin. Survey on Dynamic Ride Sharing in Big Data Era[J]. Journal of Computer Research and Development, 2017, 54(1): 34-49. DOI: 10.7544/issn1000-1239.2017.20150729
    [3]ZhuWeiheng, YinJian, DengYuhui, LongShun, QiuShiding. Efficient Duplicate Detection Approach for High Dimensional Big Data[J]. Journal of Computer Research and Development, 2016, 53(3): 559-570. DOI: 10.7544/issn1000-1239.2016.20148218
    [4]Meng Xiaofeng, Du Zhijuan. Research on the Big Data Fusion: Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2): 231-246. DOI: 10.7544/issn1000-1239.2016.20150874
    [5]Li Weibang, Li Zhanhuai, Chen Qun, Jiang Tao, Liu Hailong, Pan Wei. Functional Dependencies Discovering in Distributed Big Data[J]. Journal of Computer Research and Development, 2015, 52(2): 282-294. DOI: 10.7544/issn1000-1239.2015.20140229
    [6]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [7]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [8]Meng Xiaofeng, Li Yong, Jonathan J. H. Zhu. Social Computing in the Era of Big Data: Opportunities and Challenges[J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491. DOI: 10.7544/issn1000-1239.2013.20130890
    [9]Li Jianzhong and Liu Xianmin. An Important Aspect of Big Data: Data Usability[J]. Journal of Computer Research and Development, 2013, 50(6): 1147-1162.
    [10]Meng Xiaofeng and Ci Xiang. Big Data Management: Concepts,Techniques and Challenges[J]. Journal of Computer Research and Development, 2013, 50(1): 146-169.
  • Cited by

    Periodical cited type(16)

    1. 董艳燕. 基于混合密码技术的一种大数据加密技术研究. 湖北师范大学学报(自然科学版). 2024(02): 52-55 .
    2. 刘小都,赵慧奇. 基于混合密码体制的大数据隐匿性特征安全提取技术. 南京信息工程大学学报(自然科学版). 2023(03): 286-292 .
    3. 李博. 基于元模型控制的智能电网大数据安全监测技术研究. 电气自动化. 2023(04): 112-114+118 .
    4. 王腾腾,柴志雷. SM4国密算法的异构可重构计算系统研究. 计算机应用研究. 2023(09): 2826-2831 .
    5. 吴艾青,李伟,别梦妮,南龙梅,陈韬. 分簇式VLIW密码专用处理器的编译器后端优化研究. 小型微型计算机系统. 2023(10): 2346-2352 .
    6. 李高磊,李建华,周志洪,张昊. 面向新型关键基础设施的密码应用安全性评估技术综述. 网络与信息安全学报. 2023(06): 1-19 .
    7. 史运涛 ,董广亮 ,雷振伍 . 工业互联网云网关架构及实现. 计算机应用与软件. 2022(02): 138-143+227 .
    8. 李斌,周清雷,陈晓杰,冯峰. 可重构的素域SM2算法优化方法. 通信学报. 2022(03): 30-41 .
    9. 翟嘉琪,李斌,周清雷,陈晓杰. 基于FPGA的高性能可扩展SM4-GCM算法实现. 计算机科学. 2022(10): 74-82 .
    10. 刘育平,杨尔欣,高攀,于光宗,顾冰凌,田琳. 基于大数据技术的智慧后勤信息动态加密方法. 信息安全研究. 2022(11): 1104-1110 .
    11. 任伟峰. 内网敏感大数据共享交换安全性监控平台设计. 信息技术. 2022(10): 118-123 .
    12. 李萍,朱春琴,曹磊,孙毅,魏房忠. 基于高性能密码实现的大数据安全研究. 无线互联科技. 2021(01): 104-107 .
    13. 容爱琼,周超,陈东青. 野外环境数据加密传输及远程监测系统设计. 单片机与嵌入式系统应用. 2021(02): 86-89 .
    14. 李庆,刘涵阅,张春生. 基于折叠技术的大数据样本洗牌算法研究. 计算机技术与发展. 2021(05): 43-47 .
    15. 卫婧. 铁路商用密码应用及安全技术体系研究. 铁路计算机应用. 2020(08): 43-47 .
    16. 李杰,李雷孝,孔冬冬. 一种基于中文助记词的椭圆曲线密钥生成方案. 内蒙古工业大学学报(自然科学版). 2020(02): 128-135 .

    Other cited types(1)

Catalog

    Article views (2032) PDF downloads (745) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return