• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
Citation: Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414

Privacy-Preserving Logistic Regression on Vertically Partitioned Data

More Information
  • Published Date: September 30, 2019
  • Logistic regression is the important algorithms of machine learning. Traditional training methods require centralized collection of training data which will cause privacy issues. To solve this problem, this paper proposes privacy-preserving logistic regression. This scheme is suitable for dividing data by feature dimension, and the training data is shared between two parties. The two parties conduct collaborative training and learn a shared model. In this scheme, the two parties train the model locally on private data set while exchanging the intermediate calculation results without directly exposing their private data. Additionally, the additively homomorphic scheme can ensure the calculation security which can be performed on the cipher text. During the training process, the participants can only obtain zero knowledge of each other and cannot get any information about model parameters and training data of another participant. At the same time, a privacy protection prediction method is provided to ensure that the model deployment server cannot obtain the private data of the inquirer. After analysis and experimental verification, within the tolerable loss of precision, the scheme is secure against semi-honest participants and provide privacy protection.
  • Related Articles

    [1]Zhao Xiaoyang, Li Zhongnian, Wang Wenyu, Xu Xinzheng. ADIC: An Adaptive Disentangled CNN Classifier for Interpretable Image Recognition[J]. Journal of Computer Research and Development, 2023, 60(8): 1754-1767. DOI: 10.7544/issn1000-1239.202330231
    [2]Xie Kunpeng, Yi Dezhi, Liu Yiqing, Liu Hang, He Xinyu, Gong Cheng, Lu Ye. SAF-CNN:A Sparse Acceleration Framework of Convolutional Neural Network forEmbedded FPGAs[J]. Journal of Computer Research and Development, 2023, 60(5): 1053-1072. DOI: 10.7544/issn1000-1239.202220735
    [3]Yin Zhaoxia, Guo Hongnian, Du Yang, Ma Wenjing, Lü Wanli, Zhang Xinpeng. Multi-Domain Reversible Data Hiding in JPEG Images and Payload Distribution Algorithm[J]. Journal of Computer Research and Development, 2022, 59(8): 1831-1840. DOI: 10.7544/issn1000-1239.20210411
    [4]Liu Yanxiao, Wu Ping, Sun Qindong. Secret Image Sharing Schemes Based on Region Convolution Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1065-1074. DOI: 10.7544/issn1000-1239.2021.20200898
    [5]Wang Yangyang, He Hongjie, Chen Fan, Zhang Shanjun. Reversible Data Hiding in JPEG Images Based on Distortion-Extension Cost[J]. Journal of Computer Research and Development, 2020, 57(11): 2271-2282. DOI: 10.7544/issn1000-1239.2020.20200434
    [6]Xing Xinying, Ji Junzhong, Yao Yao. Brain Networks Classification Based on an Adaptive Multi-Task Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1449-1459. DOI: 10.7544/issn1000-1239.2020.20190186
    [7]Lü Guohao, Luo Siwei, Huang Yaping, Jiang Xinlan. A Novel Regularization Method Based on Convolution Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1891-1900. DOI: 10.7544/issn1000-1239.2014.20140266
    [8]Zhang Zhan, Liu Guangjie, Dai Yuewei, Wang Zhiquan. A Self-Adaptive Image Steganography Algorithm Based on Cover-Coding and Markov Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1668-1675.
    [9]Yang Chunfang, Liu Fenlin, and Luo Xiangyang. Histograms Difference and Quantitative Steganalysis of JPEG Steganography Based on Relative Entropy[J]. Journal of Computer Research and Development, 2011, 48(8): 1563-1569.
    [10]Zheng Qingfang, Gao Wen. Adaptive Skin Detection in JPEG Compressed Images[J]. Journal of Computer Research and Development, 2006, 43(7): 1194-1200.

Catalog

    Article views (1563) PDF downloads (1172) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return