• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
Citation: Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415

Security and Privacy Risks in Artificial Intelligence Systems

More Information
  • Published Date: September 30, 2019
  • Human society is witnessing a wave of artificial intelligence (AI) driven by deep learning techniques, bringing a technological revolution for human production and life. In some specific fields, AI has achieved or even surpassed human-level performance. However, most previous machine learning theories have not considered the open and even adversarial environments, and the security and privacy issues are gradually rising. Besides of insecure code implementations, biased models, adversarial examples, sensor spoofing can also lead to security risks which are hard to be discovered by traditional security analysis tools. This paper reviews previous works on AI system security and privacy, revealing potential security and privacy risks. Firstly, we introduce a threat model of AI systems, including attack surfaces, attack capabilities and attack goals. Secondly, we analyze security risks and counter measures in terms of four critical components in AI systems: data input (sensor), data preprocessing, machine learning model and output. Finally, we discuss future research trends on the security of AI systems. The aim of this paper is to arise the attention of the computer security society and the AI society on security and privacy of AI systems, and so that they can work together to unlock AI’s potential to build a bright future.
  • Related Articles

    [1]Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847
    [2]Shen Bilong, Zhao Ying, Huang Yan, Zheng Weimin. Survey on Dynamic Ride Sharing in Big Data Era[J]. Journal of Computer Research and Development, 2017, 54(1): 34-49. DOI: 10.7544/issn1000-1239.2017.20150729
    [3]ZhuWeiheng, YinJian, DengYuhui, LongShun, QiuShiding. Efficient Duplicate Detection Approach for High Dimensional Big Data[J]. Journal of Computer Research and Development, 2016, 53(3): 559-570. DOI: 10.7544/issn1000-1239.2016.20148218
    [4]Meng Xiaofeng, Du Zhijuan. Research on the Big Data Fusion: Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2): 231-246. DOI: 10.7544/issn1000-1239.2016.20150874
    [5]Li Weibang, Li Zhanhuai, Chen Qun, Jiang Tao, Liu Hailong, Pan Wei. Functional Dependencies Discovering in Distributed Big Data[J]. Journal of Computer Research and Development, 2015, 52(2): 282-294. DOI: 10.7544/issn1000-1239.2015.20140229
    [6]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [7]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [8]Meng Xiaofeng, Li Yong, Jonathan J. H. Zhu. Social Computing in the Era of Big Data: Opportunities and Challenges[J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491. DOI: 10.7544/issn1000-1239.2013.20130890
    [9]Li Jianzhong and Liu Xianmin. An Important Aspect of Big Data: Data Usability[J]. Journal of Computer Research and Development, 2013, 50(6): 1147-1162.
    [10]Meng Xiaofeng and Ci Xiang. Big Data Management: Concepts,Techniques and Challenges[J]. Journal of Computer Research and Development, 2013, 50(1): 146-169.
  • Cited by

    Periodical cited type(5)

    1. 廖鑫,黎懿熠,欧阳军林,周江盟,戴湘桃,秦拯. 一种基于深度学习的移动端隐写方法. 湖南大学学报(自然科学版). 2022(04): 18-25 .
    2. 何凤英. 改进卷积神经网络在图像隐写检测中的应用. 福建电脑. 2022(09): 1-6 .
    3. 黄思远,张敏情,柯彦,毕新亮. 基于显著性检测的图像隐写分析方法. 计算机应用. 2021(02): 441-448 .
    4. 黄思远,张敏情,柯彦,毕新亮. 基于自注意力机制的图像隐写分析方法. 计算机应用研究. 2021(04): 1190-1194 .
    5. 吴煌,李凯勇. 基于DCT域的数字图像隐写容量归一化方法. 计算机仿真. 2021(08): 207-211 .

    Other cited types(5)

Catalog

    Article views (9248) PDF downloads (3762) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return