• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587
Citation: Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587

A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks

Funds: This work was supported by the National Natural Science Foundation of China (61876205), the Fundamental Research Funds for the Central Universities (N172304022), the Science and Technology Plan Project of Guangzhou (201804010433), and the Bidding Project of Laboratory of Language Engineering and Computing (LEC2017ZBKT001).
More Information
  • Published Date: May 31, 2020
  • Considering the application scenario of decentralized data collection in wireless sensor networks (WSNs), a distributed data reconstruction algorithm based on Jacobi ADMM (alternating direction method of multipliers) for compressed sensing is proposed by adopting the JSM-1 (joint sparse model-1) model in the distributed compressed sensing (DCS) theory. Through exchanging the common information among cluster heads to determine the common components in the correlated sensed data and update the innovation components in each cluster head, the compressed sensed data in WSNs are reconstructed in a distributed way. The data collection operation in wireless sensor networks is firstly abstracted as a distributed optimization problem. In order to avoid non-convergence in the distributed data reconstruction process, a proximal component is then introduced into the aforementioned optimization problem with the goal of converting the sub-problem of the optimization objective function into its strictly convex form. After that, the ADMM method is utilized to solve the data reconstruction problem. Both the synthetic dataset and the real world datasets are used in the experiments to verify the performance of the proposed algorithm. Experimental results show that the proposed data reconstruction algorithm can provide higher data reconstruction accuracy than the state of the art data reconstruction algorithms.
  • Related Articles

    [1]Li Yuan, Yang Sen, Sun Jing, Zhao Huiqun, Wang Guoren. Influential Cohesive Subgraph Discovery Algorithm in Dual Networks[J]. Journal of Computer Research and Development, 2023, 60(9): 2096-2114. DOI: 10.7544/issn1000-1239.202220337
    [2]Qian Zhongsheng, Yang Jiaxiu, Li Duanming, Ye Zulai. Event Recommendation Strategy Combining User Long-Short Term Interest and vent Influence[J]. Journal of Computer Research and Development, 2022, 59(12): 2803-2815. DOI: 10.7544/issn1000-1239.20210693
    [3]Liu Haijiao, Ma Huifang, Zhao Qiqi, Li Zhixin. Target Community Detection with User Interest Preferences and Influence[J]. Journal of Computer Research and Development, 2021, 58(1): 70-82. DOI: 10.7544/issn1000-1239.2021.20190775
    [4]LiJin, YueKun, ZhangDehai, LiuWeiyi. Robust Influence Blocking Maximization in Social Networks[J]. Journal of Computer Research and Development, 2016, 53(3): 601-610. DOI: 10.7544/issn1000-1239.2016.20148341
    [5]Wu Linping, Wei Yong, Xu Xiaowei, Liu Xu. Impact of System Noise by Quantitative Analysis[J]. Journal of Computer Research and Development, 2015, 52(5): 1146-1152. DOI: 10.7544/issn1000-1239.2015.20131921
    [6]Wang Hao, Li Guohuan, Yao Hongliang, Li Junzhao. Stock Network Community Detection Method Based on Influence Calculating Model[J]. Journal of Computer Research and Development, 2014, 51(10): 2137-2147. DOI: 10.7544/issn1000-1239.2014.20130575
    [7]Zhang Yue, Zhang Hongli, Zhang Weizhe, and Lu Junjia. Identifying the Influential Users in Network Forum[J]. Journal of Computer Research and Development, 2013, 50(10): 2195-2205.
    [8]Ding Zhaoyun, Zhou Bin, Jia Yan, Zhang Lumin. Topical Influence Analysis Based on the Multi-Relational Network in Microblogs[J]. Journal of Computer Research and Development, 2013, 50(10): 2155-2175.
    [9]Liu Huaxiao, Jin Ying, and Ma Pengfei. An Approach to Requirements Change Impact Analysis[J]. Journal of Computer Research and Development, 2013, 50(8): 1769-1777.
    [10]Ma Chi, Li Zhi, Zhang Hong, and Liu Fengyu. Survivability Research on the Impact of Node Failure in MANET[J]. Journal of Computer Research and Development, 2012, 49(3): 550-557.
  • Cited by

    Periodical cited type(3)

    1. 王粲,邹伟东,夏元清. 基于衰减正则化项的I-ELM智能制造动态调度. 人工智能. 2023(01): 17-28 .
    2. 王一宾,缪佳李,程玉胜. 信息适应性分层粒化的多标签特征选择. 安庆师范大学学报(自然科学版). 2022(04): 37-43 .
    3. 曹天成,姚丽莎,陶朗. 隶属度阈值函数极限学习机的多标签学习. 怀化学院学报. 2022(05): 59-67 .

    Other cited types(8)

Catalog

    Article views (1004) PDF downloads (331) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return