• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Guilin, Wang Guanwu, Hu Jian, Wang Kang, Xu Dongzhong. Survey on Chiplet Packaging Structure and Communication Structure[J]. Journal of Computer Research and Development, 2022, 59(1): 22-30. DOI: 10.7544/issn1000-1239.20200314
Citation: Chen Guilin, Wang Guanwu, Hu Jian, Wang Kang, Xu Dongzhong. Survey on Chiplet Packaging Structure and Communication Structure[J]. Journal of Computer Research and Development, 2022, 59(1): 22-30. DOI: 10.7544/issn1000-1239.20200314

Survey on Chiplet Packaging Structure and Communication Structure

Funds: This work was supported by the National Natural Science Foundation of China (61902421).
More Information
  • Published Date: December 31, 2021
  • In recent years, as Moore’s Law approaches the limit, the development of system on chip (SoC) has encountered bottlenecks. Integrating more functional units and larger on-chip storage makes the chip area increase sharply, resulting in a decrease in chip’s yield, which in turn increases costs. In order to break through the limitations of Moore’s Law, research institutions and chip manufacturers began to seek to use advanced connection and packaging technology to disassemble the original chip into multiple smaller, higher-yielding, and cost-effective Chiplets and then reassemble them. This packaging technology is similar to the system in package (SiP) of the chip. At present, there is no unified standard for the packaging methods of Chiplets, the feasible solutions include chip splicing through silicon bridges or chip connection through interposers, etc., which can be divided into 2D, 2.5D, 3D according to the packaging structure. By summarizing the currently released Chiplets products, we discuss the advantages and disadvantages of each structure. In addition, the communication structure between multiple Chiplets is also the focus of research. How to implement a traditional bus or network on chip (NoC) on Chiplets? This paper explores the development trend and direction of Chiplets in the future through discussion of existing technologies.
  • Related Articles

    [1]Yang Lihua, Dong Yong, Wu Huijun, Tan Zhipeng, Wang Fang, Lu Kai. Survey of Log-Structured File Systems in Mobile Devices[J]. Journal of Computer Research and Development, 2025, 62(1): 58-74. DOI: 10.7544/issn1000-1239.202330789
    [2]Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
    [3]Guo Hongyi, Liu Gongshen, Su Bo, Meng Kui. Collaborative Filtering Recommendation Algorithm Combining Community Structure and Interest Clusters[J]. Journal of Computer Research and Development, 2016, 53(8): 1664-1672. DOI: 10.7544/issn1000-1239.2016.20160175
    [4]Wang Di, Zhao Tianlei, Tang Yuxing, Dou Qiang. A Communication Feature-Oriented 3D NoC Architecture Design[J]. Journal of Computer Research and Development, 2014, 51(9): 1971-1979. DOI: 10.7544/issn1000-1239.2014.20130131
    [5]Chen Ping, Xing Xiao, Xin Zhi, Wang Yi, Mao Bing, and Xie Li. Protecting Programs Based on Randomizing the Encapsulated Structure[J]. Journal of Computer Research and Development, 2011, 48(12): 2227-2234.
    [6]Li Shaofang, Hu Shanli, Shi Chunyi. An Anytime Coalition Structure Generation Based on the Grouping Idea of Cardinality Structure[J]. Journal of Computer Research and Development, 2011, 48(11): 2047-2054.
    [7]Liu Jinglei, Zhang Wei, Liu Zhaowei, and Sun Xuejiao. Properties and Application of Coalition Structure Graph[J]. Journal of Computer Research and Development, 2011, 48(4): 602-609.
    [8]Su Shexiong, Hu Shanli, Zheng Shengfu, Lin Chaofeng, and Luo Jianbin. An Anytime Coalition Structure Generation Algorithm Based on Cardinality Structure[J]. Journal of Computer Research and Development, 2008, 45(10): 1756.
    [9]Cao Yafei, Wang Dawei, and Li Sikun. A Novel System-Level Communication Synthesis Methodology Containing Crossbar Bus and Shared Bus[J]. Journal of Computer Research and Development, 2008, 45(8): 1439-1445.
    [10]Zheng Zhirong, Cai Yi, and Shen Changxiang. Research on an Application Class Communication Security Model on Operating System Security Framework[J]. Journal of Computer Research and Development, 2005, 42(2): 322-328.
  • Cited by

    Periodical cited type(5)

    1. 何业锋,刘闪闪,刘妍,权家辉,田哲铭,杨梦玫,李智. 支持虚拟车辆辅助假名更新的混合区位置隐私保护方案. 计算机应用研究. 2024(01): 272-276 .
    2. 况博裕,李雨泽,顾芳铭,苏铓,付安民. 车联网安全研究综述:威胁、对策与未来展望. 计算机研究与发展. 2023(10): 2304-2321 . 本站查看
    3. 王佳星,周武源,李甜甜. 人工智能发展态势的文献计量分析与研究. 小型微型计算机系统. 2023(11): 2424-2433 .
    4. 张迪,曹利,李原帅. 车联网环境下基于多策略访问树的安全访问控制算法. 计算机应用研究. 2023(11): 3394-3401 .
    5. 邓雨康,张磊,李晶. 车联网隐私保护研究综述. 计算机应用研究. 2022(10): 2891-2906 .

    Other cited types(2)

Catalog

    Article views (1191) PDF downloads (754) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return