• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Li, Zhang Shukui, Liu Hai, Zhang Yang, Tao Ye, Long Hao, Yu Chunqing, Zhu Qiding. Task Distribution Based on User Attention and Time Supervision[J]. Journal of Computer Research and Development, 2022, 59(4): 813-825. DOI: 10.7544/issn1000-1239.20200565
Citation: Zhang Li, Zhang Shukui, Liu Hai, Zhang Yang, Tao Ye, Long Hao, Yu Chunqing, Zhu Qiding. Task Distribution Based on User Attention and Time Supervision[J]. Journal of Computer Research and Development, 2022, 59(4): 813-825. DOI: 10.7544/issn1000-1239.20200565

Task Distribution Based on User Attention and Time Supervision

Funds: This work was supported by the National Natural Science Foundation of China (62072321,61672370), the Advance Research Fund (61403120402), the Six Talent Peak Projects in Jiangsu Province ((2104-WLW-010), the Science and Technology Project of Suzhou of China (SNG2020073, SS202023), the Natural Science Research Project of Jiangsu Higher Education Institution (19KJB520061), and the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.
More Information
  • Published Date: March 31, 2022
  • In the mobile crowd sensing network, how to complete the sensing task assigned by the publisher within a limited time is an important problem faced by the mobile crowd sensing task distribution. To solve this problem, we propose a task distribution algorithm TDUATS based on user attention and time supervision in order to make the sensing users cooperate closely and feed back the sensing tasks to the sender in time. In the algorithm, the concepts of user attention, initial supervision, process supervision and completion supervision are proposed at first, and then the relationship between users who perform sensing tasks is analyzed. In order to monitor the process of task execution, the attention model among users is established, and the sensing tasks are distributed on this basis.Two real-world mobility datasets experiments demonstrate that the our proposed algorithm can not only complete the sensing task within a limited time, but also supervise the process of task execution, which is conductive to the publisher to timely understand the execution of the task, and plays a good role in improving the satisfaction of task execution. At the same time, compared with the comparison algorithms, sender and publisher can understand the task execution process in time, effectively improving the satisfaction of both parties.
  • Related Articles

    [1]Guo Husheng, Zhang Yutong, Wang Wenjian. Elastic Gradient Ensemble for Concept Drift Adaptation[J]. Journal of Computer Research and Development, 2025, 62(5): 1235-1247. DOI: 10.7544/issn1000-1239.202440407
    [2]Guo Husheng, Zhang Yang, Wang Wenjian. Two-Stage Adaptive Ensemble Learning Method for Different Types of Concept Drift[J]. Journal of Computer Research and Development, 2024, 61(7): 1799-1811. DOI: 10.7544/issn1000-1239.202330452
    [3]Guo Husheng, Liu Yanjie, Wang Wenjian. Concept Drift Processing Method of Streaming Data Based on Mixed Feature Extraction[J]. Journal of Computer Research and Development, 2024, 61(6): 1497-1510. DOI: 10.7544/issn1000-1239.202330184
    [4]Guo Husheng, Sun Ni, Wang Jiahao, Wang Wenjian. Concept Drift Convergence Method Based on Adaptive Deep Ensemble Networks[J]. Journal of Computer Research and Development, 2024, 61(1): 172-183. DOI: 10.7544/issn1000-1239.202220835
    [5]Guo Husheng, Cong Lu, Gao Shuhua, Wang Wenjian. Adaptive Classification Method for Concept Drift Based on Online Ensemble[J]. Journal of Computer Research and Development, 2023, 60(7): 1592-1602. DOI: 10.7544/issn1000-1239.202220245
    [6]Cai Huan, Lu Kezhong, Wu Qirong, Wu Dingming. Adaptive Classification Algorithm for Concept Drift Data Stream[J]. Journal of Computer Research and Development, 2022, 59(3): 633-646. DOI: 10.7544/issn1000-1239.20201017
    [7]Cheng Guang, Qian Dexin, Guo Jianwei, Shi Haibin, Hua, Zhao Yuyu. A Classification Approach Based on Divergence for Network Traffic in Presence of Concept Drift[J]. Journal of Computer Research and Development, 2020, 57(12): 2673-2682. DOI: 10.7544/issn1000-1239.2020.20190691
    [8]Deng Dayong, Xu Xiaoyu, Huang Houkuan. Concept Drifting Detection for Categorical Evolving Data Based on Parallel Reducts[J]. Journal of Computer Research and Development, 2015, 52(5): 1071-1079. DOI: 10.7544/issn1000-1239.2015.20140275
    [9]Guo Gongde, Li Nan, and Chen Lifei. Concept Drift Detection for Data Streams Based on Mixture Model[J]. Journal of Computer Research and Development, 2014, 51(4): 731-742.
    [10]Xin Yi, Guo Gongde, Chen Lifei, Bi Yaxin. IKnnM-DHecoc: A Method for Handling the Problem of Concept Drift[J]. Journal of Computer Research and Development, 2011, 48(4): 592-601.
  • Cited by

    Periodical cited type(7)

    1. 朱思峰,王钰,陈昊,朱海,柴争义,杨诚瑞. 车联网边缘计算场景下基于改进型NSGA-Ⅱ算法的边缘服务器部署决策. 物联网学报. 2024(01): 84-97 .
    2. 门红蕾,曹利,郑国莉,李原帅,马海英. 车联网基于稀疏用户环境的LBS隐私保护方案. 计算机应用研究. 2024(09): 2831-2838 .
    3. 汪洋,叶挺,李廷文,吴兵. 自主船舶航行系统信息空间安全:挑战与探索. 华中科技大学学报(自然科学版). 2023(02): 64-76 .
    4. 郑莹莹,周俊龙,申钰凡,丛佩金,吴泽彬. 时间和能量敏感的端——边—云车路协同系统资源调度优化方法. 计算机研究与发展. 2023(05): 1037-1052 . 本站查看
    5. 况博裕,李雨泽,顾芳铭,苏铓,付安民. 车联网安全研究综述:威胁、对策与未来展望. 计算机研究与发展. 2023(10): 2304-2321 . 本站查看
    6. 王晨,郑文英,王惟正,谭皓文. 边缘计算数据安全保护研究综述. 网络空间安全科学学报. 2023(02): 35-45 .
    7. 邓雨康,张磊,李晶. 车联网隐私保护研究综述. 计算机应用研究. 2022(10): 2891-2906 .

    Other cited types(9)

Catalog

    Article views (179) PDF downloads (100) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return