• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Linlan, Tan Zhenyang, Shu Jian. Node Importance Estimation Method for Opportunistic Network Based on Graph Neural Networks[J]. Journal of Computer Research and Development, 2022, 59(4): 834-851. DOI: 10.7544/issn1000-1239.20200673
Citation: Liu Linlan, Tan Zhenyang, Shu Jian. Node Importance Estimation Method for Opportunistic Network Based on Graph Neural Networks[J]. Journal of Computer Research and Development, 2022, 59(4): 834-851. DOI: 10.7544/issn1000-1239.20200673

Node Importance Estimation Method for Opportunistic Network Based on Graph Neural Networks

Funds: This work was supported by the National Natural Science Foundation of China (62062050, 61962037) and the Natural Science Foundation of Jiangxi Province (20202BABL202039).
More Information
  • Published Date: March 31, 2022
  • Opportunistic network is a type of self-organized networks which uses the opportunity of a node moving to realize communication.Because of opportunistic communication mode, opportunistic network has observable time-varying and dynamic characteristics.The estimation of node importance is the key to study the information dissemination of opportunistic network.A novel node importance estimation method based on graph neural network (GNN-NIE) framework is proposed.Opportunistic network is sliced into opportunistic network units which is modeled by aggregate graph to present network information.The dynamic network embedding model is employed to extract the temporal and structural information among the opportunistic network units, so as to obtain the dynamic attribute features of each node in the network.Taking advantage of the GNN’s ability of extracting the features of graph data, the relationship between node dynamic attribute features and the node importance is achieved, so that the node importance of opportunistic network is estimated.The results on three real opportunistic network datasets MIT reality, Haggle project and Asturias-er show that compared with the temporal degree, temporal betweenness, temporal PageRank, and kshell-CN, the proposed method has faster propagation rate, larger message coverage and better SIR and NDCG@10 values.
  • Related Articles

    [1]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [2]Zhang Jing, Ju Jialiang, Ren Yonggong. Double-Generators Network for Data-Free Knowledge Distillation[J]. Journal of Computer Research and Development, 2023, 60(7): 1615-1627. DOI: 10.7544/issn1000-1239.202220024
    [3]Zhang Hao, Ma Jiayi, Fan Fan, Huang Jun, Ma Yong. Infrared and Visible Image Fusion Based on Multiclassification Adversarial Mechanism in Feature Space[J]. Journal of Computer Research and Development, 2023, 60(3): 690-704. DOI: 10.7544/issn1000-1239.202110639
    [4]Liu Guangrui, Zhang Weizhe, Li Xinjie. Data Contamination Defense Method for Intelligent Network Intrusion Detection Systems Based on Edge Examples[J]. Journal of Computer Research and Development, 2022, 59(10): 2348-2361. DOI: 10.7544/issn1000-1239.20220509
    [5]Guo Zhengshan, Zuo Jie, Duan Lei, Li Renhao, He Chengxin, Xiao Yingjie, Wang Peiyan. A Generative Adversarial Negative Sampling Method for Knowledge Hypergraph Link Prediction[J]. Journal of Computer Research and Development, 2022, 59(8): 1742-1756. DOI: 10.7544/issn1000-1239.20220074
    [6]Chen Dawei, Fu Anmin, Zhou Chunyi, Chen Zhenzhu. Federated Learning Backdoor Attack Scheme Based on Generative Adversarial Network[J]. Journal of Computer Research and Development, 2021, 58(11): 2364-2373. DOI: 10.7544/issn1000-1239.2021.20210659
    [7]Dai Hong, Sheng Lijie, Miao Qiguang. Adversarial Discriminative Domain Adaptation Algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. DOI: 10.7544/issn1000-1239.2021.20200569
    [8]Qian Yaguan, He Niannian, Guo Yankai, Wang Bin, Li Hui, Gu Zhaoquan, Zhang Xuhong, Wu Chunming. An Evasion Algorithm to Fool Fingerprint Detector for Deep Neural Networks[J]. Journal of Computer Research and Development, 2021, 58(5): 1106-1117. DOI: 10.7544/issn1000-1239.2021.20200903
    [9]Yu Haitao, Yang Xiaoshan, Xu Changsheng. Antagonistic Video Generation Method Based on Multimodal Input[J]. Journal of Computer Research and Development, 2020, 57(7): 1522-1530. DOI: 10.7544/issn1000-1239.2020.20190479
    [10]Tian Jiwei, Wang Jinsong, Shi Kai. Positive and Unlabeled Generative Adversarial Network on POI Positioning[J]. Journal of Computer Research and Development, 2019, 56(9): 1843-1850. DOI: 10.7544/issn1000-1239.2019.20180847

Catalog

    Article views (402) PDF downloads (220) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return