• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hong Jinxin, Wu Yingjie, Cai Jianping, Sun Lan. Differentially Private High-Dimensional Binary Data Publication via Attribute Segmentation[J]. Journal of Computer Research and Development, 2022, 59(1): 182-196. DOI: 10.7544/issn1000-1239.20200701
Citation: Hong Jinxin, Wu Yingjie, Cai Jianping, Sun Lan. Differentially Private High-Dimensional Binary Data Publication via Attribute Segmentation[J]. Journal of Computer Research and Development, 2022, 59(1): 182-196. DOI: 10.7544/issn1000-1239.20200701

Differentially Private High-Dimensional Binary Data Publication via Attribute Segmentation

Funds: This work was supported by the Natural Science Foundation of Fujian Province of China (2017J01754, 2018J01797).
More Information
  • Published Date: December 31, 2021
  • Generally, as the attribute dimension of the data set increases, the time cost and noise interference generated by the differential privacy publishing method of high-dimensional data will also increase. Especially for high-dimensional binary data, it is easy to be covered by excessive noise. Therefore, an efficient and low-noise publishing method PrivSCBN(differentially private spectral clustering Bayesian network) is proposed for the issue of privacy publishing of high-dimensional binary data. Firstly, based on Jaccard distance, this method uses a spectral clustering algorithm which satisfies differential privacy to divide the attributes set, and further segments the original data set, so as to achieve dimension reduction. Secondly, based on the idea of dynamic programming and combined with the exponential mechanism, this method uses a fast building Bayesian network algorithm which satisfies differential privacy to construct Bayesian network for each subset after segmentation. Finally, this method uses the value characteristic of conditional probability on binary data to add noise to conditional distribution extracted from Bayesian network, and reduces the noise by controlling the maximum in-degrees of Bayesian network. The efficiency and availability of the PrivSCBN method are verified by experiments on three real high-dimensional binary data sets.
  • Related Articles

    [1]Guo Husheng, Zhang Yutong, Wang Wenjian. Elastic Gradient Ensemble for Concept Drift Adaptation[J]. Journal of Computer Research and Development, 2025, 62(5): 1235-1247. DOI: 10.7544/issn1000-1239.202440407
    [2]Guo Husheng, Zhang Yang, Wang Wenjian. Two-Stage Adaptive Ensemble Learning Method for Different Types of Concept Drift[J]. Journal of Computer Research and Development, 2024, 61(7): 1799-1811. DOI: 10.7544/issn1000-1239.202330452
    [3]Guo Husheng, Liu Yanjie, Wang Wenjian. Concept Drift Processing Method of Streaming Data Based on Mixed Feature Extraction[J]. Journal of Computer Research and Development, 2024, 61(6): 1497-1510. DOI: 10.7544/issn1000-1239.202330184
    [4]Guo Husheng, Sun Ni, Wang Jiahao, Wang Wenjian. Concept Drift Convergence Method Based on Adaptive Deep Ensemble Networks[J]. Journal of Computer Research and Development, 2024, 61(1): 172-183. DOI: 10.7544/issn1000-1239.202220835
    [5]Guo Husheng, Cong Lu, Gao Shuhua, Wang Wenjian. Adaptive Classification Method for Concept Drift Based on Online Ensemble[J]. Journal of Computer Research and Development, 2023, 60(7): 1592-1602. DOI: 10.7544/issn1000-1239.202220245
    [6]Cai Huan, Lu Kezhong, Wu Qirong, Wu Dingming. Adaptive Classification Algorithm for Concept Drift Data Stream[J]. Journal of Computer Research and Development, 2022, 59(3): 633-646. DOI: 10.7544/issn1000-1239.20201017
    [7]Cheng Guang, Qian Dexin, Guo Jianwei, Shi Haibin, Hua, Zhao Yuyu. A Classification Approach Based on Divergence for Network Traffic in Presence of Concept Drift[J]. Journal of Computer Research and Development, 2020, 57(12): 2673-2682. DOI: 10.7544/issn1000-1239.2020.20190691
    [8]Deng Dayong, Xu Xiaoyu, Huang Houkuan. Concept Drifting Detection for Categorical Evolving Data Based on Parallel Reducts[J]. Journal of Computer Research and Development, 2015, 52(5): 1071-1079. DOI: 10.7544/issn1000-1239.2015.20140275
    [9]Guo Gongde, Li Nan, and Chen Lifei. Concept Drift Detection for Data Streams Based on Mixture Model[J]. Journal of Computer Research and Development, 2014, 51(4): 731-742.
    [10]Xin Yi, Guo Gongde, Chen Lifei, Bi Yaxin. IKnnM-DHecoc: A Method for Handling the Problem of Concept Drift[J]. Journal of Computer Research and Development, 2011, 48(4): 592-601.
  • Cited by

    Periodical cited type(7)

    1. 朱思峰,王钰,陈昊,朱海,柴争义,杨诚瑞. 车联网边缘计算场景下基于改进型NSGA-Ⅱ算法的边缘服务器部署决策. 物联网学报. 2024(01): 84-97 .
    2. 门红蕾,曹利,郑国莉,李原帅,马海英. 车联网基于稀疏用户环境的LBS隐私保护方案. 计算机应用研究. 2024(09): 2831-2838 .
    3. 汪洋,叶挺,李廷文,吴兵. 自主船舶航行系统信息空间安全:挑战与探索. 华中科技大学学报(自然科学版). 2023(02): 64-76 .
    4. 郑莹莹,周俊龙,申钰凡,丛佩金,吴泽彬. 时间和能量敏感的端——边—云车路协同系统资源调度优化方法. 计算机研究与发展. 2023(05): 1037-1052 . 本站查看
    5. 况博裕,李雨泽,顾芳铭,苏铓,付安民. 车联网安全研究综述:威胁、对策与未来展望. 计算机研究与发展. 2023(10): 2304-2321 . 本站查看
    6. 王晨,郑文英,王惟正,谭皓文. 边缘计算数据安全保护研究综述. 网络空间安全科学学报. 2023(02): 35-45 .
    7. 邓雨康,张磊,李晶. 车联网隐私保护研究综述. 计算机应用研究. 2022(10): 2891-2906 .

    Other cited types(9)

Catalog

    Article views (337) PDF downloads (148) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return