• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Du Guowang, Zhou Lihua, Wang Lizhen, Du Jingwei. Multi-View Clustering Based on Two-Level Weights[J]. Journal of Computer Research and Development, 2022, 59(4): 907-921. DOI: 10.7544/issn1000-1239.20200897
Citation: Du Guowang, Zhou Lihua, Wang Lizhen, Du Jingwei. Multi-View Clustering Based on Two-Level Weights[J]. Journal of Computer Research and Development, 2022, 59(4): 907-921. DOI: 10.7544/issn1000-1239.20200897

Multi-View Clustering Based on Two-Level Weights

Funds: This work was supported by the National Natural Science Foundation of China (62062066, 61762090, 61966036), Yunnan Fundamental Research Projects in 2022, the Project of the University Key Laboratory of Internet of Things Technology and Application of Yunnan Province, the National Social Science Foundation of China (18XZZ005), the Program for Innovation Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN), and the Scientific Research Fund Project of Yunnan Provincial Department of Education (2021Y026).
More Information
  • Published Date: March 31, 2022
  • In the process of clustering, the high-dimensionality and sparsity of multi-view data make the different features of samples described in a view have different effects on the clustering results, and each sample has different contributions to the clustering in different views. Hierarchically distinguishing the weights of different features in one view and the weights of the same sample in different views is an important factor to improve the quality of multi-view clustering. In this paper, we propose a multi-view clustering algorithm based on two-level weights, i.e. feature-level and sample-level weights. The proposed algorithm is named MVC2W, which learns the weights of different features in each view and the weights of each sample in different views by introducing a feature-level and a sample-level attention mechanism. The introduction of the two-level attention mechanism allows the algorithm to pay more attention to important features and important samples during the training process, and to integrate information from different views in a more rational way, thereby alleviating effectively the effects induced by high-dimensionality and sparsity on clustering quality. In addition, MVC2W integrates the process of representation learning and clustering into a unified framework for collaborative training and mutual promotion, so as to further improve the clustering performance. The experimental results on 5 datasets with different degrees of sparseness show that MVC2W algorithm outperforms 11 baseline algorithms, especially in the datasets with high degree of sparseness, and the improvement of clustering performance obtained by MVC2W is more significant.
  • Related Articles

    [1]Yang Lihua, Dong Yong, Wu Huijun, Tan Zhipeng, Wang Fang, Lu Kai. Survey of Log-Structured File Systems in Mobile Devices[J]. Journal of Computer Research and Development, 2025, 62(1): 58-74. DOI: 10.7544/issn1000-1239.202330789
    [2]Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
    [3]Guo Hongyi, Liu Gongshen, Su Bo, Meng Kui. Collaborative Filtering Recommendation Algorithm Combining Community Structure and Interest Clusters[J]. Journal of Computer Research and Development, 2016, 53(8): 1664-1672. DOI: 10.7544/issn1000-1239.2016.20160175
    [4]Wang Di, Zhao Tianlei, Tang Yuxing, Dou Qiang. A Communication Feature-Oriented 3D NoC Architecture Design[J]. Journal of Computer Research and Development, 2014, 51(9): 1971-1979. DOI: 10.7544/issn1000-1239.2014.20130131
    [5]Chen Ping, Xing Xiao, Xin Zhi, Wang Yi, Mao Bing, and Xie Li. Protecting Programs Based on Randomizing the Encapsulated Structure[J]. Journal of Computer Research and Development, 2011, 48(12): 2227-2234.
    [6]Li Shaofang, Hu Shanli, Shi Chunyi. An Anytime Coalition Structure Generation Based on the Grouping Idea of Cardinality Structure[J]. Journal of Computer Research and Development, 2011, 48(11): 2047-2054.
    [7]Liu Jinglei, Zhang Wei, Liu Zhaowei, and Sun Xuejiao. Properties and Application of Coalition Structure Graph[J]. Journal of Computer Research and Development, 2011, 48(4): 602-609.
    [8]Su Shexiong, Hu Shanli, Zheng Shengfu, Lin Chaofeng, and Luo Jianbin. An Anytime Coalition Structure Generation Algorithm Based on Cardinality Structure[J]. Journal of Computer Research and Development, 2008, 45(10): 1756.
    [9]Cao Yafei, Wang Dawei, and Li Sikun. A Novel System-Level Communication Synthesis Methodology Containing Crossbar Bus and Shared Bus[J]. Journal of Computer Research and Development, 2008, 45(8): 1439-1445.
    [10]Zheng Zhirong, Cai Yi, and Shen Changxiang. Research on an Application Class Communication Security Model on Operating System Security Framework[J]. Journal of Computer Research and Development, 2005, 42(2): 322-328.
  • Cited by

    Periodical cited type(5)

    1. 何业锋,刘闪闪,刘妍,权家辉,田哲铭,杨梦玫,李智. 支持虚拟车辆辅助假名更新的混合区位置隐私保护方案. 计算机应用研究. 2024(01): 272-276 .
    2. 况博裕,李雨泽,顾芳铭,苏铓,付安民. 车联网安全研究综述:威胁、对策与未来展望. 计算机研究与发展. 2023(10): 2304-2321 . 本站查看
    3. 王佳星,周武源,李甜甜. 人工智能发展态势的文献计量分析与研究. 小型微型计算机系统. 2023(11): 2424-2433 .
    4. 张迪,曹利,李原帅. 车联网环境下基于多策略访问树的安全访问控制算法. 计算机应用研究. 2023(11): 3394-3401 .
    5. 邓雨康,张磊,李晶. 车联网隐私保护研究综述. 计算机应用研究. 2022(10): 2891-2906 .

    Other cited types(2)

Catalog

    Article views (218) PDF downloads (126) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return