• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Meng Ziyao, Gu Xue, Liang Yanchun, Xu Dong, Wu Chunguo. Deep Neural Architecture Search: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 22-33. DOI: 10.7544/issn1000-1239.2021.20190851
Citation: Meng Ziyao, Gu Xue, Liang Yanchun, Xu Dong, Wu Chunguo. Deep Neural Architecture Search: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 22-33. DOI: 10.7544/issn1000-1239.2021.20190851

Deep Neural Architecture Search: A Survey

Funds: This work was supported by the National Natural Science Foundation of China (61972174, 61876069, 61876207), the Key Research and Development Project of Jilin Province (20180201045GX, 20180201067GX), the Natural Science Foundation of Jilin Province(20200201163JC), the Science and Technology Planning Project of Guangdong Province (2020A0505100018), the Guangdong Key-Project for Applied Fundamental Research (2018KZDXM076), and the Guangdong Premier Key-Discipline Enhancement Scheme (2016GDYSZDXK036).
More Information
  • Published Date: December 31, 2020
  • Deep learning has achieved excellent results on data tasks with multiple modalities such as images, speech, and text. However, designing networks manually for specific tasks is time-consuming and requires a certain level of expertise and design experience from the designer. In the face of today’s increasingly complex network architectures, relying on manual design alone increasingly becomes complex. For this reason, automatic architecture search of neural networks with the help of algorithms has become a hot research topic. The approach of neural architecture search involves three aspects: search space, search strategy, and performance evaluation strategy. The search strategy samples a network architecture in the search space, evaluates the network architecture by a performance evaluation strategy, and feed-back the results to the search strategy to guide it to select a better network architecture, and obtains the optimal network architecture through continuous iterations. In order to better sort out the methods of neural architecture search, we summarize the common methods in recent years from search space, search strategy and performance evaluation strategy, and analyze their strengths and weaknesses.
  • Related Articles

    [1]Shang Jing, Wu Zhihui, Xiao Zhiwen, Zhang Yifei. Graph4Cache: A Graph Neural Network Model for Cache Prefetching[J]. Journal of Computer Research and Development, 2024, 61(8): 1945-1956. DOI: 10.7544/issn1000-1239.202440190
    [2]Zhang Tianming, Zhao Jie, Jin Lu, Chen Lu, Cao Bin, Fan Jing. Vertex Betweenness Centrality Computation Method over Temporal Graphs[J]. Journal of Computer Research and Development, 2023, 60(10): 2383-2393. DOI: 10.7544/issn1000-1239.202220650
    [3]Li Fengying, Shen Huiqiang, Dong Rongsheng. Compact Representation of Temporal Graphs Based on kd-MDD[J]. Journal of Computer Research and Development, 2022, 59(6): 1286-1296. DOI: 10.7544/issn1000-1239.20200856
    [4]Zhang Tianming, Xu Yiheng, Cai Xinwei, Fan Jing. A Shortest Path Query Method over Temporal Graphs[J]. Journal of Computer Research and Development, 2022, 59(2): 362-375. DOI: 10.7544/issn1000-1239.20210893
    [5]Zhang Heng, Zhang Libo, WuYanjun. Large-Scale Graph Processing on Multi-GPU Platforms[J]. Journal of Computer Research and Development, 2018, 55(2): 273-288. DOI: 10.7544/issn1000-1239.2018.20170697
    [6]Dong Rongsheng, Zhang Xinkai, Liu Huadong, Gu Tianlong. Representation and Operations Research of k\+2-MDD in Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2783-2792. DOI: 10.7544/issn1000-1239.2016.20160589
    [7]Yu Jing, Liu Yanbing, Zhang Yu, Liu Mengya, Tan Jianlong, Guo Li. Survey on Large-Scale Graph Pattern Matching[J]. Journal of Computer Research and Development, 2015, 52(2): 391-409. DOI: 10.7544/issn1000-1239.2015.20140188
    [8]Fu Lizhen, Meng Xiaofeng. Reachability Indexing for Large-Scale Graphs: Studies and Forecasts[J]. Journal of Computer Research and Development, 2015, 52(1): 116-129. DOI: 10.7544/issn1000-1239.2015.20131567
    [9]Zhong Ming, Wang Sheng, and Liu Mengchi. An Optimization Approach of Known-Item Search on Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2014, 51(1): 54-63.
    [10]Xu Shifeng, Gao Jun, Yang Dongqing, and Wang Tengjiao. Pass-Count-Based Path Query on Big Graph Datasets[J]. Journal of Computer Research and Development, 2010, 47(1): 96-103.
  • Cited by

    Periodical cited type(10)

    1. 刘晨曦,孙秉珍,楚晓丽,祁畅. 基于复合粗糙集的异构属性患者社区划分模型. 复杂系统与复杂性科学. 2023(03): 27-34 .
    2. 孙学良,王巍,黄俊恒,辛国栋,王佰玲. 基于标签传播的两阶段社区检测算法. 网络与信息安全学报. 2022(02): 139-149 .
    3. 郑文萍,乔艳超,杨贵. 基于局部邻域连通性的重叠社区发现算法. 山西大学学报(自然科学版). 2022(02): 369-379 .
    4. 张霄宏,史爱静,贾慧娟,任建吉. 一种优化的标签传播方法. 小型微型计算机系统. 2021(01): 137-141 .
    5. 郑文萍,刘美麟,穆俊芳,杨贵. 一种基于节点稳定性的社区发现算法. 南京大学学报(自然科学). 2021(01): 101-109 .
    6. 吴卫江,桑睿彤,郑艺峰. 基于限制性随机游走局部谱近似社区发现算法. 计算机工程与设计. 2021(09): 2472-2477 .
    7. 赵霞,张泽华,张晨威,李娴. RGNE:粗糙粒化的网络嵌入式重叠社区发现方法. 计算机研究与发展. 2020(06): 1302-1311 . 本站查看
    8. 闵磊. 基于社区发现的个性化推荐技术研究. 科技资讯. 2020(30): 217-218+225 .
    9. 郑文萍,岳香豆,杨贵. 基于随机游走的改进标签传播算法. 计算机应用. 2020(12): 3423-3429 .
    10. 凤丽洲,覃悦,杨贵军. 节点局部Fiedler向量中心性差值社区发现算法. 计算机科学与探索. 2019(12): 2029-2042 .

    Other cited types(27)

Catalog

    Article views (2514) PDF downloads (1600) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return