• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
Citation: Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338

A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization

Funds: This work was supported by the National Natural Science Foundation of China (U19B2015) and the Top-level Talent Project of Zhejiang Province.
More Information
  • Published Date: August 31, 2021
  • As edge computing and cloud computing develop in a rapid speed and integrate with each other, resources and services gradually offload from the core network to the edge of the network. Efficient computation offloading algorithm is one of the most important problems in mobile edge computing networks. In order to improve the performance of the algorithm, a computation offloading algorithm with path selection based on K-shell influence maximization is proposed. The K-shell method is used to grade the edge servers by applying the convertibility and maximizing influence model of similar problems. Otherwise, considering the problem of excessive load of edge servers, path overlap (PO) algorithm is constructed, and indicators such as the communication quality, interaction strength, and queue processing ability, etc. are introduced to optimize the performance of the algorithm. The offloading path problem of the optimization calculation task is transformed into the social network impact maximization problem. Based on the idea of maximizing K-shell influence, greedy and heuristic algorithms are optimized and improved, and the K-shell influence maximization computation offloading (Ks-IMCO) algorithm is proposed to solve the problem of computational offloading. Through the comparative analysis of Ks-IMCO and random allocation (RA), path selection with handovers (PSwH) algorithm experiments, the energy consumption and delay of Ks-IMCO algorithm have been significantly improved, which can effectively improve the efficiency of edge computing network computing offloading.
  • Related Articles

    [1]Wang Chuang, Ding Yan, Huang Chenlin, Song Liantao. Bitsliced Optimization of SM4 Algorithm with the SIMD Instruction Set[J]. Journal of Computer Research and Development, 2024, 61(8): 2097-2109. DOI: 10.7544/issn1000-1239.202220531
    [2]Li Maowen, Qu Guoyuan, Wei Dazhou, Jia Haipeng. Performance Optimization of Neural Network Convolution Based on GPU Platform[J]. Journal of Computer Research and Development, 2022, 59(6): 1181-1191. DOI: 10.7544/issn1000-1239.20200985
    [3]Shen Jie, Long Biao, Jiang Hao, Huang Chun. Implementation and Optimization of Vector Trigonometric Functions on Phytium Processors[J]. Journal of Computer Research and Development, 2020, 57(12): 2610-2620. DOI: 10.7544/issn1000-1239.2020.20190721
    [4]Zhang Jun, Xie Jingcheng, Shen Fanfan, Tan Hai, Wang Lümeng, He Yanxiang. Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey[J]. Journal of Computer Research and Development, 2020, 57(6): 1191-1207. DOI: 10.7544/issn1000-1239.2020.20200113
    [5]Sun Chang’ai, Wang Zhen, Pan Lin. Optimized Mutation Testing Techniques for WS-BPEL Programs[J]. Journal of Computer Research and Development, 2019, 56(4): 895-905. DOI: 10.7544/issn1000-1239.2019.20180037
    [6]Liu Song, Wu Weiguo, Zhao Bo, Jiang Qing. Loop Tiling for Optimization of Locality and Parallelism[J]. Journal of Computer Research and Development, 2015, 52(5): 1160-1176. DOI: 10.7544/issn1000-1239.2015.20131387
    [7]Wang Yongxian, Zhang Lilun, Che Yonggang, Xu Chuanfu, Liu Wei, Cheng Xinghua. Heterogeneous Computing and Optimization on Tianhe-2,Supercomputer System for High-Order Accurate CFD Applications[J]. Journal of Computer Research and Development, 2015, 52(4): 833-842. DOI: 10.7544/issn1000-1239.2015.20131922
    [8]Gu Rong, Yan Jinshuang, Yang Xiaoliang, Yuan Chunfeng, and Huang Yihua. Performance Optimization for Short Job Execution in Hadoop MapReduce[J]. Journal of Computer Research and Development, 2014, 51(6): 1270-1280.
    [9]Luo Hongbing, Zhang Xiaoxia, Wang Wei, and Wu Linping. Instruction Level Parallel Optimizing for Scientific Computing Application[J]. Journal of Computer Research and Development, 2014, 51(6): 1263-1269.
    [10]Li Lei, Niu Chunlei, Chen Ningjiang, Wei Jun. A High-Performance Strategy for Optimizing Web Services[J]. Journal of Computer Research and Development, 2007, 44(7): 1191-1198.
  • Cited by

    Periodical cited type(5)

    1. 郭炜杰,包晓安. 基于Ajax的智能终端一次性口令身份认证仿真. 计算机仿真. 2023(07): 176-179 .
    2. 罗娟,章翠君,王纯. 基于众包的多楼层定位方法. 计算机研究与发展. 2022(02): 452-462 . 本站查看
    3. 胡美慧,向志威. 基于离散余弦变换的电力营销系统客户权限自动识别方法. 自动化技术与应用. 2022(05): 125-129 .
    4. 赵鹏飞. 港口身份智能识别系统设计与实现. 舰船科学技术. 2021(14): 202-204 .
    5. 倪志文,马小虎,孙霄,边丽娜. 结合显式和隐式特征交互的深度融合模型. 计算机工程. 2020(03): 87-92+98 .

    Other cited types(9)

Catalog

    Article views (567) PDF downloads (186) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return