• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dai Hong, Sheng Lijie, Miao Qiguang. Adversarial Discriminative Domain Adaptation Algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. DOI: 10.7544/issn1000-1239.2021.20200569
Citation: Dai Hong, Sheng Lijie, Miao Qiguang. Adversarial Discriminative Domain Adaptation Algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. DOI: 10.7544/issn1000-1239.2021.20200569

Adversarial Discriminative Domain Adaptation Algorithm with CapsNet

Funds: This work was supported by the National Natural Science Foundation of China (61772396, 61902296), the Project of Xi’an Key Laboratory of Big Data and Intelligent Vision (201805053ZD4CG37), and the China Postdoctoral Science Foundation (2019M663640).
More Information
  • Published Date: August 31, 2021
  • Recently, studies on domain adaptation have shown the effectiveness of adversarial learning in filling the differences between two domains, but there are still some limitations that samples taken from two domains are not enough to keep the domain invariance in potential spaces. Inspired by the fact that CapsNet(capsule network) has a strong ability to extract the invariance of features from samples, we introduce it into the domain adaptation problem. Firstly, a new convolution algorithm is devised over capsule-layer, combined with residual block, which makes it possible to train a deeper CapsNet. Results demonstrate that this new structure of CapsNet has a stronger ability to extract features. Secondly, the traditional adversarial discriminative adaptation methods have the defect that prones to blur the boundary between different domains, which in turn leads to a decline in the discriminative performance. Inspired by VAE-GAN(variational auto-encoder, generative adversarial networks), we use a reconstruction network as a strong constraint, so that the adversarial discriminative network avoids the inherent defect of mode collapse when the convolution base is transferring, and ensures that the discriminator is sensitive to the invariance of representation in different domains. Experiments on standard datasets show that our model achieves better performance in domain adaptation tasks of varying complexity.
  • Related Articles

    [1]Bai Xuefei, Wang Wenjian, Liang Jiye. An Active Contour Model Based on Region Saliency for Image Segmentation[J]. Journal of Computer Research and Development, 2012, 49(12): 2686-2695.
    [2]Long Jianwu, Shen Xuanjing, and Chen Haipeng. Interactive Document Images Thresholding Segmentation Algorithm Based on Image Regions[J]. Journal of Computer Research and Development, 2012, 49(7): 1420-1431.
    [3]Liu Zhe, Song Yuqing, Chen Jianmei, Xie Conghua, Song Wenshan. Image Segmentation Based on Non-Parametric Mixture Models of Chebyshev Orthogonal Polynomials of the Second Kind[J]. Journal of Computer Research and Development, 2011, 48(11): 2008-2014.
    [4]Zhu Feng, Luo Limin, Song Yuqing, Chen Jianmei, Zuo Xin. Adaptive Spatially Neighborhood Information Gaussian Mixture Model for Image Segmentation[J]. Journal of Computer Research and Development, 2011, 48(11): 2000-2007.
    [5]Chen Yunjie, Zhang Jianwei, Wang Shunfeng, Zhan Tianming. Brain MR Image Segmentation Based on Anisotropic Wells Model[J]. Journal of Computer Research and Development, 2010, 47(11): 1878-1885.
    [6]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.
    [7]Shi Chunqi, Shi Zhiping, Liu Xi, Shi Zhongzhi. Image Segmentation Based on Self-Organizing Dynamic Neural Network[J]. Journal of Computer Research and Development, 2009, 46(1): 23-30.
    [8]Chen Yunjie, Zhang Jianwei, Wei Zhihui, Xia Desheng, Heng Pheng Ann. Brain MRI Segmentation Using the Active Contours Based on Gaussian Mixture Models[J]. Journal of Computer Research and Development, 2007, 44(9): 1595-1603.
    [9]Shi Chengxian, Wang Hongyuan, Heng Pheng Ann, Xia Deshen. A Parametric Active Contour Model for Medical Image Segmentation Using Priori Shape Force Field[J]. Journal of Computer Research and Development, 2006, 43(12): 2131-2137.
    [10]Zhang Jianwei, Xia Deshen. An Image Segmentation Model Based on Dual Level Sets[J]. Journal of Computer Research and Development, 2006, 43(1): 120-125.

Catalog

    Article views (475) PDF downloads (235) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return