• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Jinyin, Huang Guohan, Zhang Dunjie, Zhang Xuhong, Ji Shouling. GRD-GNN: Graph Reconstruction Defense for Graph Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1075-1091. DOI: 10.7544/issn1000-1239.2021.20200935
Citation: Chen Jinyin, Huang Guohan, Zhang Dunjie, Zhang Xuhong, Ji Shouling. GRD-GNN: Graph Reconstruction Defense for Graph Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1075-1091. DOI: 10.7544/issn1000-1239.2021.20200935

GRD-GNN: Graph Reconstruction Defense for Graph Neural Network

Funds: This work was supported by the National Natural Science Foundation of China (62072406), the Natural Science Foundation of Zhejiang Province of China (LY19F020025), and the Key Laboratory of the Public Security Ministry Open Project in 2020 (2020DSJSYS001).
More Information
  • Published Date: April 30, 2021
  • Recent years, graph neural network (GNN) has been widely applied in our daily life for its satisfying performance in graph representation learning, and such as e-commerce, social media and biology, etc. However, research has suggested that GNNs are vulnerable to adversarial attacks carefully crafted, leading the GNN model to fail. Therefore, it is essential to improve the robustness of graph neural network. Several defense methods have been proposed to improve the robustness of GNNs. However, how to reduce the attack success rate of adversarial attacks while ensuring the performance of the main task of the GNN still remains a challenge. Through the observation of various adversarial samples, it is concluded that the node pairs connected by adversarial edges have characteristics of low structural similarity and low node feature similarity compared with the clean ones. Based on the observation, we propose a graph reconstruction defense for graph neural network named GRD-GNN. Considering both graph structure and node features, both the number of common neighbors and the similarity of nodes are applied to guide the graph reconstruction. GRD-GNN not only removes the adversarial edges, but also adds edges that are beneficial to the performance of the GNN to enhance the graph structure. At last, comprehensive experiments on three real-world datasets verify the art-of-the-state defense performance of proposed GRD-GNN compared with baselines. Additionally, the explanation of the results of experiments and analysis of effectiveness of the method are shown in the paper.
  • Related Articles

    [1]Xie Guo, Zhang Huaiwen, Wang Le, Liao Qing, Zhang Aoqian, Zhou Zhili, Ge Huilin, Wang Zhiheng, Wu Guozheng. Acceptance and Funding Status of Artificial Intelligence Discipline Projects Under the National Natural Science Foundation of China in 2024[J]. Journal of Computer Research and Development, 2025, 62(3): 648-661. DOI: 10.7544/issn1000-1239.202550008
    [2]Li Xu, Zhu Rui, Chen Xiaolei, Wu Jinxuan, Zheng Yi, Lai Chenghang, Liang Yuxuan, Li Bin, Xue Xiangyang. A Survey of Hallucinations in Large Vision-Language Models: Causes, Evaluations and Mitigations[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440444
    [3]Chen Xuanting, Ye Junjie, Zu Can, Xu Nuo, Gui Tao, Zhang Qi. Robustness of GPT Large Language Models on Natural Language Processing Tasks[J]. Journal of Computer Research and Development, 2024, 61(5): 1128-1142. DOI: 10.7544/issn1000-1239.202330801
    [4]Zhang Mi, Pan Xudong, Yang Min. JADE-DB:A Universal Testing Benchmark for Large Language Model Safety Based on Targeted Mutation[J]. Journal of Computer Research and Development, 2024, 61(5): 1113-1127. DOI: 10.7544/issn1000-1239.202330959
    [5]Shu Wentao, Li Ruixiao, Sun Tianxiang, Huang Xuanjing, Qiu Xipeng. Large Language Models: Principles, Implementation, and Progress[J]. Journal of Computer Research and Development, 2024, 61(2): 351-361. DOI: 10.7544/issn1000-1239.202330303
    [6]Yang Yi, Li Ying, Chen Kai. Vulnerability Detection Methods Based on Natural Language Processing[J]. Journal of Computer Research and Development, 2022, 59(12): 2649-2666. DOI: 10.7544/issn1000-1239.20210627
    [7]Pan Xudong, Zhang Mi, Yang Min. Fishing Leakage of Deep Learning Training Data via Neuron Activation Pattern Manipulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2323-2337. DOI: 10.7544/issn1000-1239.20220498
    [8]Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
    [9]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [10]Wang Ye, Chen Junwu, Xia Xin, Jiang Bo. Intelligent Requirements Elicitation and Modeling: A Literature Review[J]. Journal of Computer Research and Development, 2021, 58(4): 683-705. DOI: 10.7544/issn1000-1239.2021.20200740

Catalog

    Article views (832) PDF downloads (530) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return