• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Jialai, Zhang Chao, Qi Xuyan, Rong Yi. A Survey of Intelligent Malware Detection on Windows Platform[J]. Journal of Computer Research and Development, 2021, 58(5): 977-994. DOI: 10.7544/issn1000-1239.2021.20200964
Citation: Wang Jialai, Zhang Chao, Qi Xuyan, Rong Yi. A Survey of Intelligent Malware Detection on Windows Platform[J]. Journal of Computer Research and Development, 2021, 58(5): 977-994. DOI: 10.7544/issn1000-1239.2021.20200964

A Survey of Intelligent Malware Detection on Windows Platform

Funds: This work was supported by the General Program of the National Natural Science Foundation of China (61972224).
More Information
  • Published Date: April 30, 2021
  • In recent years, malware has brought many negative effects to the development of information technology. In order to solve this problem, how to effectively detect malware has always been a concern. With the rapid development of artificial intelligence, machine learning and deep learning technologies are gradually introduced into the field of malware detection. This type of technology is called intelligent malware detection technology. Compared with traditional detection methods, intelligent detection technology does not need to manually formulate detection rules due to the application of artificial intelligence technology. Besides, intelligent detection technology has stronger generalization capabilities, and can better detect previously unseen malware. Intelligent malware detection has become a research hotspot in the field of detection. This paper mainly introduces current work related to intelligent malware detection, which includes the main parts required for intelligent detection processes. Specifically, we have systematically explained and classified related work for intelligent malware detection in this paper, which includes the features commonly used in intelligent detection, how to perform feature processing, the commonly used classifiers in intelligent detection, and the main problems faced by current malware intelligent detection. Finally, we summarize the full paper and clarify the potential future research directions, aiming to contribute to the development of intelligent malware detection.
  • Related Articles

    [1]Yue Wenjing, Qu Wenwen, Lin Kuan, Wang Xiaoling. Survey of Cardinality Estimation Techniques Based on Machine Learning[J]. Journal of Computer Research and Development, 2024, 61(2): 413-427. DOI: 10.7544/issn1000-1239.202220649
    [2]Li Jianing, Xiong Ruibin, Lan Yanyan, Pang Liang, Guo Jiafeng, Cheng Xueqi. Overview of the Frontier Progress of Causal Machine Learning[J]. Journal of Computer Research and Development, 2023, 60(1): 59-84. DOI: 10.7544/issn1000-1239.202110780
    [3]Wang Ye, Chen Junwu, Xia Xin, Jiang Bo. Intelligent Requirements Elicitation and Modeling: A Literature Review[J]. Journal of Computer Research and Development, 2021, 58(4): 683-705. DOI: 10.7544/issn1000-1239.2021.20200740
    [4]Chen Jinyin, Chen Yipeng, Chen Yiming, Zheng Haibin, Ji Shouling, Shi Jie, Cheng Yao. Fairness Research on Deep Learning[J]. Journal of Computer Research and Development, 2021, 58(2): 264-280. DOI: 10.7544/issn1000-1239.2021.20200758
    [5]Cheng Keyang, Wang Ning, Shi Wenxi, Zhan Yongzhao. Research Advances in the Interpretability of Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. DOI: 10.7544/issn1000-1239.2020.20190485
    [6]Liu Chenyi, Xu Mingwei, Geng Nan, Zhang Xiang. A Survey on Machine Learning Based Routing Algorithms[J]. Journal of Computer Research and Development, 2020, 57(4): 671-687. DOI: 10.7544/issn1000-1239.2020.20190866
    [7]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [8]Ji Shouling, Li Jinfeng, Du Tianyu, Li Bo. Survey on Techniques, Applications and Security of Machine Learning Interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096. DOI: 10.7544/issn1000-1239.2019.20190540
    [9]Meng Xiaofeng, Ma Chaohong, Yang Chen. Survey on Machine Learning for Database Systems[J]. Journal of Computer Research and Development, 2019, 56(9): 1803-1820. DOI: 10.7544/issn1000-1239.2019.20190446
    [10]Yu Kai, Jia Lei, Chen Yuqiang, and Xu Wei. Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
  • Cited by

    Periodical cited type(5)

    1. 周军芽,吴进伟,吴广飞,张何为. 基于Bi-LSTM神经网络的短文本敏感词识别方法. 武汉理工大学学报(信息与管理工程版). 2024(02): 312-316 .
    2. 石新满,胡广林,邵鑫,赵新爽,张思慧,乔晓. 基于人工智能大语言模型技术的电网优化运行应用分析. 自动化与仪器仪表. 2024(08): 180-184 .
    3. 李卓卓,蒋雨萌. 信息隐私量表对象、指标和应用的研究与展望. 情报理论与实践. 2024(10): 41-52 .
    4. 谭九生,李猛. 人机融合智能的伦理风险及其适应性治理. 昆明理工大学学报(社会科学版). 2022(03): 37-45 .
    5. 潘旭东,张谧,杨珉. 基于神经元激活模式控制的深度学习训练数据泄露诱导. 计算机研究与发展. 2022(10): 2323-2337 . 本站查看

    Other cited types(7)

Catalog

    Article views (1731) PDF downloads (887) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return