• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Xiang, Zheng Yuzhen, Su Xing, Yu Jintao, Xu Weixia, Wu Junjie. A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology[J]. Journal of Computer Research and Development, 2021, 58(9): 1875-1896. DOI: 10.7544/issn1000-1239.2021.20210368
Citation: Fu Xiang, Zheng Yuzhen, Su Xing, Yu Jintao, Xu Weixia, Wu Junjie. A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology[J]. Journal of Computer Research and Development, 2021, 58(9): 1875-1896. DOI: 10.7544/issn1000-1239.2021.20210368

A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology

Funds: This work was supported by the National Natural Science Foundation of China (61902410) and the Autonomous Project of the State Key Laboratory of High Performance Computing (202001-01, 202101-24).
More Information
  • Published Date: August 31, 2021
  • Quantum computers promise to accelerate solving problems that are intractable by classical computers, such as prime factorization and quantum chemistry simulation. It has been demonstrated that a single quantum system can integrate more than fifty noisy solid-state qubits and surpass contemporary classical computers in specific computing tasks, marking the arrival of the noisy intermediate-scale quantum (NISQ) era. As more and more qubits can be integrated into a single system, how to integrate qubits with control hardware, software development environment, and classical computing resources to obtain a complete and usable quantum computing system is a problem that needs to be further clarified. By comparing both the control and execution of quantum and classical computing, this paper proposes a heterogeneous quantum-classical system targeting the NISQ technology. Taking a typical NISQ algorithm (the iterative phase estimation algorithm) as an example, this paper introduces the whole process of executing a quantum algorithm and related software and hardware, including the high-level programming language, compiler, quantum software and hardware interface, and control microarchitecture. On top of it, this paper discusses the challenges confronting each layer in the NISQ era. This paper aims to provide a general introduction of quantum computing systems to readers (especially beginners of quantum computing) from an engineering perspective, hoping to promote people’s understanding of the overall architecture of quantum computing systems in the NISQ era and stimulate more related research.
  • Related Articles

    [1]Wang Chuang, Ding Yan, Huang Chenlin, Song Liantao. Bitsliced Optimization of SM4 Algorithm with the SIMD Instruction Set[J]. Journal of Computer Research and Development, 2024, 61(8): 2097-2109. DOI: 10.7544/issn1000-1239.202220531
    [2]Li Maowen, Qu Guoyuan, Wei Dazhou, Jia Haipeng. Performance Optimization of Neural Network Convolution Based on GPU Platform[J]. Journal of Computer Research and Development, 2022, 59(6): 1181-1191. DOI: 10.7544/issn1000-1239.20200985
    [3]Shen Jie, Long Biao, Jiang Hao, Huang Chun. Implementation and Optimization of Vector Trigonometric Functions on Phytium Processors[J]. Journal of Computer Research and Development, 2020, 57(12): 2610-2620. DOI: 10.7544/issn1000-1239.2020.20190721
    [4]Zhang Jun, Xie Jingcheng, Shen Fanfan, Tan Hai, Wang Lümeng, He Yanxiang. Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey[J]. Journal of Computer Research and Development, 2020, 57(6): 1191-1207. DOI: 10.7544/issn1000-1239.2020.20200113
    [5]Sun Chang’ai, Wang Zhen, Pan Lin. Optimized Mutation Testing Techniques for WS-BPEL Programs[J]. Journal of Computer Research and Development, 2019, 56(4): 895-905. DOI: 10.7544/issn1000-1239.2019.20180037
    [6]Liu Song, Wu Weiguo, Zhao Bo, Jiang Qing. Loop Tiling for Optimization of Locality and Parallelism[J]. Journal of Computer Research and Development, 2015, 52(5): 1160-1176. DOI: 10.7544/issn1000-1239.2015.20131387
    [7]Wang Yongxian, Zhang Lilun, Che Yonggang, Xu Chuanfu, Liu Wei, Cheng Xinghua. Heterogeneous Computing and Optimization on Tianhe-2,Supercomputer System for High-Order Accurate CFD Applications[J]. Journal of Computer Research and Development, 2015, 52(4): 833-842. DOI: 10.7544/issn1000-1239.2015.20131922
    [8]Gu Rong, Yan Jinshuang, Yang Xiaoliang, Yuan Chunfeng, and Huang Yihua. Performance Optimization for Short Job Execution in Hadoop MapReduce[J]. Journal of Computer Research and Development, 2014, 51(6): 1270-1280.
    [9]Luo Hongbing, Zhang Xiaoxia, Wang Wei, and Wu Linping. Instruction Level Parallel Optimizing for Scientific Computing Application[J]. Journal of Computer Research and Development, 2014, 51(6): 1263-1269.
    [10]Li Lei, Niu Chunlei, Chen Ningjiang, Wei Jun. A High-Performance Strategy for Optimizing Web Services[J]. Journal of Computer Research and Development, 2007, 44(7): 1191-1198.
  • Cited by

    Periodical cited type(5)

    1. 郭炜杰,包晓安. 基于Ajax的智能终端一次性口令身份认证仿真. 计算机仿真. 2023(07): 176-179 .
    2. 罗娟,章翠君,王纯. 基于众包的多楼层定位方法. 计算机研究与发展. 2022(02): 452-462 . 本站查看
    3. 胡美慧,向志威. 基于离散余弦变换的电力营销系统客户权限自动识别方法. 自动化技术与应用. 2022(05): 125-129 .
    4. 赵鹏飞. 港口身份智能识别系统设计与实现. 舰船科学技术. 2021(14): 202-204 .
    5. 倪志文,马小虎,孙霄,边丽娜. 结合显式和隐式特征交互的深度融合模型. 计算机工程. 2020(03): 87-92+98 .

    Other cited types(9)

Catalog

    Article views (557) PDF downloads (370) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return