Citation: | Liu Leyuan, Dai Yurou, Cao Yanan, Zhou Fan. Survey of User Geographic Location Prediction Based on Online Social Network[J]. Journal of Computer Research and Development, 2024, 61(2): 385-412. DOI: 10.7544/issn1000-1239.202220417 |
With the increasing popularity of intelligent mobile terminals, people increasingly use social network platforms (such as Twitter, Sina Weibo, etc.) for information acquisition, comments, and exchanges. Although GPS devices can accurately obtain location information, many users do not directly share their location information for privacy and security considerations. Therefore, obtaining the geographic location of online users has become an important topic in both academia and industry and is the foundation of many downstream applications, such as location-based targeted advertising, event/location recommendations, early warning of natural disasters or diseases, and criminal tracking, etc. We survey in detail the methods, data types, evaluation metrics, and fundamental algorithms for predicting the geographic location of social network users. First, we discriminate different online user geolocation tasks and corresponding evaluation protocols. Subsequently, we assess the data structures and fusion methods used for individual geolocation tasks. Besides, we analyze the existing information extraction and feature selection approaches, as well as their advantages and disadvantages. Moreover, we provide a taxonomy to categorize existing user geolocation models and algorithms, followed by a thorough analysis of different methods from three aspects: geographic dictionary, traditional machine learning, deep learning and graph neural networks. Finally, we summarize the difficulties and challenges in user location prediction while outlining the possible research trend and opportunities to shed light on future work in this field.
[1] |
Hui Bo, Chen Haiquan, Yan Da, et al. EDGE: Entity-diffusion Gaussian ensemble for interpretable tweet geolocation prediction[C] //Proc of the 37th IEEE Int Conf on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2021: 1092−1103
|
[2] |
Qazi U, Imran M, Ofli F. Geocov19: A dataset of hundreds of millions of multilingual Covid19 tweets with location information[J]. SIGSPATIAL Special, 2020, 12(1): 6−15 doi: 10.1145/3404820.3404823
|
[3] |
Wang Shuihua, Govindaraj V V, Górriz J M, et al. Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network[J]. Information Fusion, 2021, 67: 208−229 doi: 10.1016/j.inffus.2020.10.004
|
[4] |
Rill S, Reinel D, Scheidt J, et al. Politwi: Early detection of emerging political topics on Twitter and the impact on concept-level sentiment analysis[J]. Knowledge-Based Systems, 2014, 69: 24−33 doi: 10.1016/j.knosys.2014.05.008
|
[5] |
Unankard S, Li Xue, Sharaf M A. Emerging event detection in social networks with location sensitivity[J]. World Wide Web, 2015, 18(5): 1393−1417 doi: 10.1007/s11280-014-0291-3
|
[6] |
Luceri L, Andreoletti D, Giordano S. Infringement of tweets geo-location privacy: An approach based on graph convolutional neural networks[J]. arXiv preprint, arXiv: 1903. 11206, 2019
|
[7] |
Eligüzel N, Çetinkaya C, Dereli T. Comparison of different machine learning techniques on location extraction by utilizing geo-tagged tweets: A case study[J]. Advanced Engineering Informatics, 2020, 46: 101151 doi: 10.1016/j.aei.2020.101151
|
[8] |
Suwaileh R, Imran M, Elsayed T, et al. Are we ready for this disaster? Towards location mention recognition from crisis tweets[C] //Proc of the 28th Int Conf on Computational Linguistics. Red Hook, NY: Curran Associates, 2020: 6252−6263
|
[9] |
Hu Yingjie, Wang Jimin. How do people describe locations during a natural disaster: An analysis of tweets from hurricane Harvey[C] //Proc of the 11th Int Conf on Geographic Information Science. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021: 6: 1−6: 16
|
[10] |
Xie Min, Yin Hongzhi, Wang Hao, et al. Learning graph-based POI embedding for location-based recommendation[C] //Proc of the 25th ACM Int Conf on Information and Knowledge Management. New York: ACM, 2016: 15−24
|
[11] |
Ajao O, Hong Jun, Liu Weirui. A survey of location inference techniques on Twitter[J]. Journal of Information Science, 2015, 41(6): 855−864 doi: 10.1177/0165551515602847
|
[12] |
Zheng Xin, Han Jialong, Sun Aixin. A survey of location prediction on Twitter[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1652−1671 doi: 10.1109/TKDE.2018.2807840
|
[13] |
Xu Shuai, Fu Xiaoming, Cao Jiuxin, et al. Survey on user location prediction based on geo-social networking data[J]. World Wide Web, 2020, 23(3): 1621−1664 doi: 10.1007/s11280-019-00777-8
|
[14] |
Cheng Zhiyuan, Caverlee J, Lee K. A content-driven framework for geo-locating microblog users[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(1): 1−27
|
[15] |
Roller S, Speriosu M, Rallapalli S et al. Supervised text based geolocation using language models on an adaptive grid[C] //Proc of the 2012 Joint Conf on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA: ACL, 2012: 1500−1510
|
[16] |
Java A, Song Xiaodan, Finin T, et al. Why we Twitter: An analysis of a microblogging community[C] //Proc of the Int Workshop on Social Network Mining and Analysis. Berlin: Springer, 2007: 118−138
|
[17] |
Graham M, Hale S A, Gaffney D. Where in the world are you? Geolocation and language identification in Twitter[J]. The Professional Geographer, 2014, 66(4): 568−578 doi: 10.1080/00330124.2014.907699
|
[18] |
Shen Wei, Wang Jianyong, Han Jiawei. Entity linking with a knowledge base: Issues, techniques, and solutions[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(2): 443−460
|
[19] |
MacEachren A M, Jaiswal A, Robinson A C, et al. Senseplace2: Geotwitter analytics support for situational awareness[C] //Proc of the IEEE Conf on Visual Analytics Science and Technology (VAST). Piscataway, NJ: IEEE, 2011: 181−190
|
[20] |
Feng Shanshan, Cong Gao, An Bo, et al. Poi2vec: Geographical latent representation for predicting future visitors[C] //Proc of the 31st AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2017: 102−108
|
[21] |
Li Rui, Wang Shengjie, Deng Hongbo, et al. Towards social user profiling: Unified and discriminative influence model for inferring home locations[C]//Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2012: 1023−1031
|
[22] |
Schulz A, Hadjakos A, Paulheim H, et al. A multi-indicator approach for geo-localization of tweets[C] //Proc of the 7th Int AAAI Conf on Weblogs and Social Media. Palo Alto, CA: AAAI, 2013: 573−582
|
[23] |
Compton R, Jurgens D, Allen D. Geotagging one hundred million Twitter accounts with total variation minimization[C] //Proc of the IEEE Int Conf on Big Data, Palo Alto, CA: AAAI, 2014: 393-401
|
[24] |
Flatow D, Naaman M, Xie K E, et al. On the accuracy of hyper-local geotagging of social media content[C] //Proc of the 8th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2015: 127−136
|
[25] |
Ritter A, Clark S, Etzioni O, et al. Named entity recognition in tweets: An experimental study[C] //Proc of the 2011 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2011: 1524−1534
|
[26] |
Anantharam P, Barnaghi P, Thirunarayan K, et al. Extracting city traffic events from social streams[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(4): 1−27
|
[27] |
Liu Bo, Yuan Quan, Cong Gao, et al. Where your photo is taken: Geolocation prediction for social images[J]. Journal of the Association for Information Science and Technology, 2014, 65(6): 1232−1243 doi: 10.1002/asi.23050
|
[28] |
Ozdikis O, Ramampiaro H, Nørvåg K. Locality-adapted kernel densities of term co-occurrences for location prediction of tweets[J]. Information Processing & Management, 2019, 56(4): 1280−1299
|
[29] |
Young S D, Zhang Qingpeng, Zeng D D, et al. Social media images as an emerging tool to monitor adherence to COVID-19 public health guidelines: Content analysis[J]. Journal of Medical Internet Research, 2022, 24(3): e24787 doi: 10.2196/24787
|
[30] |
Zhou Fan, Dai Yurou, Gao Qiang, et al. Self-supervised human mobility learning for next location prediction and trajectory classification[J]. Knowledge-Based Systems, 2021, 228: 107214 doi: 10.1016/j.knosys.2021.107214
|
[31] |
Ye Jihang, Zhu Zhe, Cheng Hong. What’s your next move: User activity prediction in location-based social networks[C] //Proc of the 2013 SIAM Int Conf on Data Mining. Philadelphia, PA: SIAM, 2013: 171−179
|
[32] |
Gao Huiji, Tang Jiliang, Hu Xia, et al. Content-aware point of interest recommendation on location-based social networks[C] //Proc of the 29th AAAI Conf on Artificial Intelligence, Palo Alto, CA: AAAI, 2015: 1721−1727
|
[33] |
Zhang Zhiyuan, Liu Yun, Zhang Zhenjiang, et al. Fused matrix factorization with multi-tag, social and geographical influences for POI recommendation[J]. World Wide Web, 2019, 22(3): 1135−1150 doi: 10.1007/s11280-018-0579-9
|
[34] |
Manotumruksa J, Macdonald C, Ounis I. Modelling user preferences using word embeddings for context-aware venue recommendation[J]. arXiv preprint, arXiv: 1606. 07828, 2016
|
[35] |
Giridhar P, Abdelzaher T, George J, et al. On quality of event localization from social network feeds[C] //Proc of the IEEE Int Conf on Pervasive Computing and Communication Workshops (PerCom Workshops). Piscataway, NJ: IEEE, 2015: 75−80
|
[36] |
Imran M, Castillo C, Diaz F, et al. Processing social media messages in mass emergency: A survey[J]. ACM Computing Surveys, 2015, 47(4): 1−38
|
[37] |
Li Pengfei, Lu Hua, Kanhabua N et al. Location inference for non-geotagged tweets in user timelines[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(6): 1150−1165
|
[38] |
Lin Yucheng, Lai Chunming, Chapman J W, et al. Geo-location identification of Facebook pages[C] //Proc of 2018 IEEE/ACM Int Conf on Advances in Social Networks Analysis and Mining (ASONAM). Piscataway, NJ: IEEE, 2018: 441−446
|
[39] |
Ao J, Zhang Peng, Cao Yanan. Estimating the locations of emergency events from Twitter streams[J]. Procedia Computer Science, 2014, 31: 731−739 doi: 10.1016/j.procs.2014.05.321
|
[40] |
Sakaki T, Okazaki M Matsuo Y. Tweet analysis for real-time event detection and earthquake reporting system development[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 25(4): 919−931
|
[41] |
Lee R, Sumiya K. Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection[C] //Proc of the 2nd ACM SIGSPATIAL Int Workshop on Location Based Social Networks. New York: ACM, 2010: 1−10
|
[42] |
Wing B, Baldridge J. Simple supervised document geolocation with geodesic grids[C] //Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2011: 955−964
|
[43] |
Abrol S, Khan L. Tweethood: Agglomerative clustering on fuzzy k-closest friends with variable depth for location mining[C] //Proc of the 2nd IEEE Int Conf on Social Computing. Piscataway, NJ: IEEE, 2010: 153−160
|
[44] |
Backstrom L, Sun E, Marlow C. Find me if you can: Improving geographical prediction with social and spatial proximity[C] //Proc of the 19th Int Conf on World Wide Web. New York: ACM, 2010: 61−70
|
[45] |
McGee J, Caverlee J, Cheng Zhiyuan. Location prediction in social media based on tie strength[C] //Proc of the 22nd ACM Int Conf on Information & Knowledge Management. New York: ACM, 2013: 459−468
|
[46] |
Jurgens D. That’s what friends are for: Inferring location in online social media platforms based on social relationships[C] //Proc of the 7th Int AAAI Conf on Weblogs and Social Media. Palo Alto, CA: AAAI, 2013: 273−282
|
[47] |
Kossinets G, Watts D J. Empirical analysis of an evolving social network[J]. Science, 2006, 311(5757): 88−90 doi: 10.1126/science.1116869
|
[48] |
McGee J, Caverlee J A, Cheng Zhiyuan. A geographic study of tie strength in social media[C] //Proc of the 20th ACM Int Conf on Information and Knowledge Management. New York: ACM, 2011: 2333−2336
|
[49] |
Hecht B, Hong L, Suh B, et al. Tweets from justin bieber’s heart: The dynamics of the location field in user profiles[C] //Proc of the SIGCHI Conf on Human Factors in Computing Systems. New York: ACM, 2011: 237−246
|
[50] |
Achrekar H, Gandhe A, Lazarus R, et al. Online social networks flu trend tracker: A novel sensory approach to predict flu trends[C] //Proc of the Int Joint Conf on Biomedical Engineering Systems and Technologies. Berlin: Springer, 2012: 353−368
|
[51] |
Yin Jie, Karimi S, Lampert A, et al. Using social media to enhance emergency situation awareness[C] //Proc of the 24th Int Joint Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2015: 4234−4239
|
[52] |
Mahmud J, Nichols J, Drews C. Home location identification of twitter users[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 1−21
|
[53] |
Huang Binxuan, Carley K M. A hierarchical location prediction neural network for twitter user geolocation[C] //Proc of the 2019 Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 4731−4741
|
[54] |
Van Der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579−2605
|
[55] |
Li Chenliang, Sun Aixin. Fine-grained location extraction from tweets with temporal awareness[C] //Proc of the 37th Int ACM SIGIR Conf on Research & Development in Information Retrieval. New York: ACM, 2014: 43−52
|
[56] |
Ikawa Y, Enoki M, Tatsubori M. Location inference using microblog messages[C] //Proc of the 21st Int Conf on World Wide Web. New York: ACM, 2012: 687−690
|
[57] |
Sankaranarayanan J, Samet H, Teitler B E, et al. Twitterstand: News in tweets[C] //Proc of the 17th ACM SIGSPATIAL Int Conf on Advances in Geographic Information Systems. New York: ACM, 2009: 42−51
|
[58] |
Teitler B E, Lieberman M D, Panozzo D, et al. NewsStand: A new view on news[C/OL] //Proc of the 16th ACM SIGSPATIAL Int Conf on Advances in Geographic Information Systems. New York: ACM, 2008 [2022-11-11].https://dl.acm.org/doi/10.1145/1463434.1463458
|
[59] |
Chauhan A, Kummamuru K, Toshniwal D. Prediction of places of visit using tweets[J]. Knowledge and Information Systems, 2017, 50(1): 145−166 doi: 10.1007/s10115-016-0936-x
|
[60] |
Manotumruksa J, Macdonald C, Ounis I. Matrix factorisation with word embeddings for rating prediction on location-based social networks[C] //Proc of the European Conf on Information Retrieval. Berlin: Springer, 2017: 647−654
|
[61] |
Lim W L, Ho C C, Ting C Y. Sentiment analysis by fusing text and location features of geo-tagged tweets[J]. IEEE Access, 2020, 8: 181014−181027 doi: 10.1109/ACCESS.2020.3027845
|
[62] |
Abdelhaq H, Sengstock C, Gertz M. Eventweet: Online localized event detection from Twitter[J]. Proceedings of the VLDB Endowment, 2013, 6(12): 1326−1329 doi: 10.14778/2536274.2536307
|
[63] |
Samuel A, Sharma D K. Location estimation of non-geo-tagged tweets[J]. Evolutionary Intelligence, 2021, 14(2): 205−216 doi: 10.1007/s12065-018-0163-3
|
[64] |
Ozdikis O, Oguztuzun H, Karagoz P. Evidential location estimation for events detected in Twitter[C] //Proc of the 7th Workshop on Geographic Information Retrieval. New York: ACM, 2013: 9−16
|
[65] |
Ozdikis O, Oğuztüzün H, Karagoz P. Evidential estimation of event locations in microblogs using the Dempster–Shafer theory[J]. Information Processing & Management, 2016, 52(6): 1227−1246
|
[66] |
Nadeau D, Sekine S. A survey of named entity recognition and classification[J]. Lingvisticae Investigationes, 2007, 30(1): 3−26 doi: 10.1075/li.30.1.03nad
|
[67] |
Roick O, Heuser S. Location based social networks-definition, current state of the art and research agenda[J]. Transactions in GIS, 2013, 17(5): 763−784 doi: 10.1111/tgis.12032
|
[68] |
Gelernter J, Mushegian N. Geo-parsing messages from microtext[J]. Transactions in GIS, 2011, 15(6): 753−773 doi: 10.1111/j.1467-9671.2011.01294.x
|
[69] |
Lingad J, Karimi S, Yin Jie. Location extraction from disaster-related microblogs[C] //Proc of the 22nd Int Conf on World Wide Web. New York: ACM, 2013: 1017−1020
|
[70] |
Hinduja S, Patchin J W. Bullying, cyberbullying, and suicide[J]. Archives of Suicide Research, 2010, 14(3): 206−221 doi: 10.1080/13811118.2010.494133
|
[71] |
Malmasi S, Dras M. Location mention detection in tweets and microblogs[C] //Proc of the Conf of the Pacific Association for Computational Linguistics. Berlin: Springer, 2015: 123−134
|
[72] |
Zhang Wei, Gelernter Judith. Geocoding location expressions in Twitter messages: A preference learning method[J]. Journal of Spatial Information Science, 2014, 2014(9): 37−70
|
[73] |
Paradesi S M. Geotagging tweets using their content[C] //Proc of the 24th Int FLAIRS Conf. Palo Alto, CA: AAAI, 2011: 355−356
|
[74] |
Vieweg S, Hughes A L, Starbird K, et al. Microblogging during two natural hazards events: What Twitter may contribute to situational awareness[C] //Proc of the SIGCHI Conf on Human Factors in Computing Systems. New York: ACM, 2010: 1079−1088
|
[75] |
Pennacchiotti M, Popescu A. A machine learning approach to Twitter user classification[C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media. Palo Alto, CA: AAAI, 2011: 281−288
|
[76] |
Gültekin G, Bayat O. A Naïve Bayes prediction model on location-based recommendation by integrating multi-dimensional contextual information[J]. Multimedia Tools and Applications, 2022, 81(5): 6957−6978 doi: 10.1007/s11042-021-11676-4
|
[77] |
Stock K, Jones C B, Russell S, et al. Detecting geospatial location descriptions in natural language text[J]. International Journal of Geographical Information Science, 2022, 36((3): ): 547−584 doi: 10.1080/13658816.2021.1987441
|
[78] |
Giridhar P, Wang Shiguang, Abdelzaher T F, et al. Joint localization of events and sources in social networks[C] //Proc of the Int Conf on Distributed Computing in Sensor Systems. Piscataway, NJ: IEEE, 2015: 179−188
|
[79] |
Cheng Zhiyuan, Caverlee J, Lee K. You are where you tweet: A content-based approach to geo-locating Twitter users[C] //Proc of the 19th ACM Int Conf on Information and Knowledge Management. New York: ACM, 2010: 759−768
|
[80] |
Huang Chao, Wang Dong, Zhu Shenglong. Where are you from: Home location profiling of crowd sensors from noisy and sparse crowdsourcing data[C/OL] //Proc of the IEEE Conf on Computer Communications (INFOCOM 2017). Piscataway, NJ: IEEE, 2017 [2023-03-29].https://ieeexplore.ieee.org/abstract/document/8057112
|
[81] |
Eisenstein Ja, O’Connor B, Smith N A, et al. A latent variable model for geographic lexical variation[C] //Proc of the 2010 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2010: 1277−1287
|
[82] |
Hong Liangjie, Ahmed A, Gurumurthy S, et al. Discovering geographical topics in the Twitter stream[C] //Proc of the 21st Int Conf on World Wide Web. New York: ACM, 2012: 769−778
|
[83] |
Grover A, Leskovec J. Node2Vec: Scalable feature learning for networks[C] //Proc of the 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855864
|
[84] |
Chang H, Lee D, Eltaher M, et al. @Phillies tweeting from Philly? Predicting Twitter user locations with spatial word usage[C] //Proc of the IEEE/ACM Int Conf on Advances in Social Networks Analysis and Mining. New York: ACM, 2012: 111−118
|
[85] |
Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes twitter users: Real-time event detection by social sensors[C] //Proc of the 19th Int Conf on World Wide Web. New York: ACM, 2010: 851−860
|
[86] |
Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/nongaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174−188 doi: 10.1109/78.978374
|
[87] |
Li Wen, Eickhoff C, de Vries A P. Want a coffee? Predicting users’ trails[C] //Proc of the 35th Int ACM SIGIR Conf on Research and Development In Information Retrieval. New York: ACM, 2012: 1171−1172
|
[88] |
Rodrigues E, Assunção R, Pappa G L, et al. Exploring multiple evidence to infer users’location in Twitter[J]. Neuro Computing, 2016, 171: 30−38
|
[89] |
Zhang Jiadong, Chow C Y, Li Yanhua. Lore: Exploiting sequential influence for location recommendations[C] //Proc of the 22nd ACM SIGSPATIAL Int Conf on Advances in Geographic Information Systems. New York: ACM, 2014: 103−112
|
[90] |
Lian Defu, Xie Xing, Zheng Vincent W, et al. CEPR: A collaborative exploration and periodically returning model for location prediction[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(1): 1−27
|
[91] |
Cheng Chen, Yang Haiqin, Lyu M R, et al. Where you like to go next: Successive point-of-interest recommendation[C] //Proc of the 23rd Int Joint Conf on Artificial Intelligence. Los Altos, CA: IJCAI, 2013: 2605−2611
|
[92] |
Feng Shanshan, Li Xutao, Zeng Yifeng, et al. Personalized ranking metric embedding for next new POI recommendation[C] //Proc of the 24th Int Joint Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2015: 2069−2075
|
[93] |
Chen Sijia, Zhang Jian, Meng Fanwei, et al. A Markov chain position prediction model based on multidimensional correction[J]. Complexity, 2021, 2021: 6677132
|
[94] |
Good I J. The population frequencies of species and the estimation of population parameters[J]. Biometrika, 1953, 40(34): 237−264
|
[95] |
Rendle S, Freudenthaler C SchmidtThieme L. Factorizing personalized Markov chains for nextbasket recommendation[C] //Proc of the 19th Int Conf on World Wide Web. New York: ACM, 2010: 811−820
|
[96] |
Lu Jing, Anjiri S N, Liu Cong. Compredict: A location prediction method by mining semantic trajectories and mobile intention[J/OL]. Available at SSRN, 2022 [2022-05-06].https://ssrn.com/abstract=4034463
|
[97] |
Han Jiawei, Kamber M, Tung A. Spatial clustering methods in data mining: A survey[J]. Geographic Data Mining and Knowledge Discovery, 2001, 1: 188−217
|
[98] |
Yin Hongzhi, Hu Zhiting, Zhou Xiaofang, et al. Discovering interpretable geosocial communities for user behavior prediction[C]//Proc of the IEEE 32nd Int Conf on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2016: 942−953
|
[99] |
Kong Longbo, Liu Zhi, Huang Yan. Spot: Locating social media users based on social network context[J]. Proceedings of the VLDB Endowment, 2014, 7(13): 1681−1684 doi: 10.14778/2733004.2733060
|
[100] |
Poulston A, Stevenson M, Bontcheva K. Hyperlocal home location identification of Twitter profiles[C]//Proc of the 28th ACM Conf on Hypertext and Social Media. New York: ACM, 2017: 45−54
|
[101] |
Alaskar H, Vaiyapuri T, Sbai Z. Twitter analytics for discovering socially important locations for business improvement[C/OL] //Proc of the IEEE Int Symp on Signal Processing and Information Technology (ISSPIT). Piscataway, NJ: IEEE, 2019 [2023-03-29].https://ieeexplore.ieee.org/abstract/document/9001873
|
[102] |
Senefonte H C M, Delgado M R, Lüders R, et al. PredicTour: Predicting mobility patterns of tourists based on social media user’s profiles[J]. IEEE Access, 2022, 10: 9257−9270 doi: 10.1109/ACCESS.2022.3143503
|
[103] |
Gao Qiang, Zhou Fan, Trajcevski G, et al. Predicting human mobility via variational attention[C] //Proc of the World Wide Web Conf. New York: ACM, 2019: 2750−2756
|
[104] |
Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C] //Proc of the 2nd Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 1996: 226−231
|
[105] |
Boettcher A, Lee D. Eventradar: A real-time local event detection scheme using Twitter stream[C] //Proc of the IEEE Int Conf on Green Computing and Communications. Piscataway, NJ: IEEE, 2012: 358−367
|
[106] |
Tamura K, Ichimura T. Density-based spatiotemporal clustering algorithm for extracting bursty areas from georeferenced documents[C] //Proc of the IEEE Int Conf on Systems, Man, and Cybernetics. Piscataway, NJ: IEEE, 2013: 2079−2084
|
[107] |
Sakai T, Tamura K. Identifying bursty areas of emergency topics in geotagged tweets using density-based spatiotemporal clustering algorithm[C] //Proc of the 7th IEEE Int Workshop on Computational Intelligence and Applications (IWCIA). Piscataway, NJ: IEEE, 2014: 95−100
|
[108] |
Ebrahimi M, ShafieiBavani E, Wong R, et al. Exploring celebrities on inferring user geolocation in Twitter[C] //Proc of the Pacific-Asia Conf on Knowledge Discovery and Data Mining. Piscataway, NJ: IEEE, 2017: 395−406
|
[109] |
Hulden M, Silfverberg M, Francom J. Kernel density estimation for text-based geolocation[C] //Proc of the 29th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2015: 145-150
|
[110] |
Yin Zhijun, Cao Liangliang, Han Jiawei, et al. Geographical topic discovery and comparison[C] //Proc of the 20th Int Conf on World Wide Web. New York: ACM, 2011: 247−256
|
[111] |
Van L O, Quinn J, Schockaert S, et al. Spatially aware term selection for geotagging[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(1): 221−234
|
[112] |
Priedhorsky R, Culotta A, Del V S Y. Inferring the origin locations of tweets with quantitative confidence[C] //Proc of the 17th ACM Conf on Computer Supported Cooperative Work & Social Computing. New York: ACM, 2014: 1523−1536
|
[113] |
Bakerman J, Pazdernik K, Wilson A, et al. Twitter geolocation: A hybrid approach[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(3): 1−17
|
[114] |
Lu Yafeng, Hu Xia, Wang Feng, et al. Visualizing social media sentiment in disaster scenarios[C] //Proc of the 24th Int Conf on World Wide Web. New York: ACM, 2015: 1211−1215
|
[115] |
Lichman M, Smyth P. Modeling human location data with mixtures of kernel densities[C] //Proc of the 20th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2014: 35−44
|
[116] |
Zhang Jiadong, Chow C Y. iGSLR: Personalized geo social location recommendation: A kernel density estimation approach[C] //Proc of the 21st ACM SIGSPATIAL Int Conf on Advances in Geographic Information Systems. New York: ACM, 2013: 334−343
|
[117] |
Botev Z I, Grotowski J F, Kroese D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5): 2916−2957
|
[118] |
Chen Wei, Wang Weiqing, Yin Hongzhi, et al. HFUL: A hybrid framework for user account linkage across location-aware social networks[J]. The VLDB Journal, 2023, 32(1): 1−22 doi: 10.1007/s00778-022-00730-8
|
[119] |
Cai Liangqi, Wen Wen, Wu Biao, et al. A coarse-to-fine user preferences prediction method for point-of-interest recommendation[J]. Neurocomputing, 2021, 422: 1−11 doi: 10.1016/j.neucom.2020.09.034
|
[120] |
Lian Defu, Zhao Cong, Xie Xing, et al. GeoMF: Joint geographical modeling and matrix factorization for point-of-interest recommendation[C] //Proc of the 20th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2014: 831−840
|
[121] |
Lian Defu, Zheng Kai, Ge Yong, et al. GeoMF++ scalable location recommendation via joint geographical modeling and matrix factorization[J]. ACM Transactions on Information Systems, 2018, 36(3): 1−29
|
[122] |
Manotumruksa J, Macdonald C, Ounis I. Regularising factorised models for venue recommendation using friends and their comments[C] //Proc of the 25th ACM Int on Conf on Information and Knowledge Management. New York: ACM, 2016: 1981−1984
|
[123] |
Zhao Shenglin, Zhao Tong, Yang Haiqin, et al. STELLAR: Spatial-temporal latent ranking for successive point-of-interest recommendation[C] //Proc of the 30th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2016: 315−322
|
[124] |
Liu Bin, Xiong Hui, Papadimitriou S, et al. A general geographical probabilistic factor model for point of interest recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(5): 1167−1179
|
[125] |
Liu Bin, Fu Yanjie, Yao Zijun, et al. Learning geographical preferences for point-of-interest recommendation[C] //Proc of the 19th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2013: 1043−1051
|
[126] |
Zhao Pengpeng, Xu Xiefeng, Liu Yanchi, et al. Exploiting hierarchical structures for POI recommendation[C] //Proc of the 2017 IEEE Int Conf on Data Mining (ICDM). Piscataway, NJ: IEEE, 2017: 655−664
|
[127] |
Li Xin, Jiang Mingming, Hong Huiting, et al. A time-aware personalized point-of-interest recommendation via high-order tensor factorization[J]. ACM Transactions on Information Systems, 2017, 35(4): 1−23
|
[128] |
Yang Dingqi, Zhang Daqing, Zheng V W, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 45(1): 129−142
|
[129] |
Zhang Chenyi, Wang Ke. POI recommendation through cross-region collaborative filtering[J]. Knowledge and Information Systems, 2016, 46(2): 369−387 doi: 10.1007/s10115-015-0825-8
|
[130] |
Liu Qiang, Wu Shu, Wang Liang, et al. Predicting the next location: A recurrent model with spatial and temporal contexts[C] //Proc of the 30th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2016: 194−200
|
[131] |
Miura Y, Taniguchi M, Taniguchi T, et al. A simple scalable neural networks based model for geolocation prediction in Twitter[C] //Proc of the 2nd Workshop on Noisy User-generated Text (WNUT). New York: ACM, 2016: 235−239
|
[132] |
Rahimi A, Cohn T, Baldwin T. A neural model for user geolocation and lexical dialectology[C] //Proc of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2017: 209−216
|
[133] |
Rahimi A, Baldwin T, Cohn T. Continuous representation of location for geolocation and lexical dialectology using mixture density networks[C] //Procs of the 2017 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2017: 167−176
|
[134] |
Miura Y, Taniguchi M, Taniguchi T, et al. Unifying text, metadata, and user network representations with a neural network for geolocation prediction[C] //Proc of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2017: 1260−1272
|
[135] |
Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493−2537
|
[136] |
Iso H Wakamiya S, Aramaki E. Density estimation for geolocation via convolutional mixture density network[J]. arXiv preprint, arXiv: 1705. 02750, 2017
|
[137] |
Mousset P, Pitarch Y, Tamine L. End-to-end neural matching for semantic location prediction of tweets[J]. ACM Transactions on Information Systems, 2020, 39(1): 1−35
|
[138] |
Chen Zi, Pokharel B, Li Bingnan, et al. Location extraction from twitter messages using a bidirectional long short-term memory neural network with conditional random field model[C] //Proc of the Int Conf on Geographical Information Systems Theory, Applications and Management. Berlin: Springer, 2020: 18−30
|
[139] |
Ajao O, Bhowmik D, Zargari S. Content-aware tweet location inference using quadtree spatial partitioning and Jaccard-cosine word embedding[C] //Proc of the IEEE/ACM Int Conf on Advances in Social Networks Analysis and Mining (ASONAM). New York: ACM, 2018: 1116−1123
|
[140] |
Izbicki M, Papalexakis V, Tsotras V. Geolocating tweets in any language at any location[C]//Proc of the 28th ACM Int Conf on Information and Knowledge Management. New York: ACM, 2019: 89−98
|
[141] |
Xu Shuai, Cao Jiuxin, Legg P, et al. Venue2vec: An efficient embedding model for fine-grained user location prediction in geosocial networks[J]. IEEE Systems Journal, 2019, 14((2): ): 1740−1751
|
[142] |
Ghaffari M, Srinivasan A, Liu Xiuwen. High resolution home location prediction from tweets using deep learning with dynamic structure[C] //Proc of the 2019 IEEE/ACM Int Conf on Advances in Social Networks Analysis and Mining. Piscataway, NJ: IEEE, 2019: 540−542
|
[143] |
Xu Canwen, Li Jing, Luo Xiangyang, et al. Dlocrl: A deep learning pipeline for fine grained location recognition and linking in tweets[C] //Proc of the World Wide Web Conf. New York: ACM, 2019: 3391−3397
|
[144] |
Bao Yi, Huang Zhou, Li Linna, et al. A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media[J]. International Journal of Geographical Information Science, 2021, 35(4): 639−660 doi: 10.1080/13658816.2020.1808896
|
[145] |
Dat V A D, Yoon S. A human location prediction-based routing protocol in mobile crowdsensing-based urban sensor networks[J]. Applied Sciences, 2022, 12(8): 3898 doi: 10.3390/app12083898
|
[146] |
Chiu J P C, Nichols E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357−370 doi: 10.1162/tacl_a_00104
|
[147] |
Kumar A, Singh J P. Location reference identification from tweets during emergencies: A deep learning approach[J]. Internatinal Journal of Disaster Risk Reduction, 2019, 33: 365−375 doi: 10.1016/j.ijdrr.2018.10.021
|
[148] |
Huang Binxuan, Carley K M. On predicting geolocation of tweets using convolutional neural networks[C] //Proc of the Int Conf on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Berlin: Springer, 2017: 281−291
|
[149] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C] //Proc of the Advances in Neural Information Processing Systems. Piscataway, NJ: IEEE, 2017: 5998−6008
|
[150] |
Feng Jie, Li Yong, Zhang Chao, et al. Deepmove: Predicting human mobility with attentional recurrent networks[C] //Proc of the 2018 World Wide Web Conf. New York: ACM, 2018: 1459−1468
|
[151] |
Huang Chieh Yang, Tong Hanghang, He Jingrui, et al. Location prediction for tweets[J]. Frontiers in Big Data, 2019, 2: 5 doi: 10.3389/fdata.2019.00005
|
[152] |
Wang Zhixiao, Yan Wenyao, Gao Ang. Fine-grained user location prediction using meta-path context with attention mechanism[J]. Journal of Web Engineering, 2021, 20(3): 597−614
|
[153] |
Wang Shuang, Li Anlian, Xie Shuai, et al. A spatial-temporal self-attention network for location prediction[J/OL]. Complexity, 2021 [2022-11-11]. https://downloads.hindawi.com/journals/complexity/2021/6692313.pdf
|
[154] |
Liu Yuwen, Song Zuolong, Xu Xiaolong, et al. Bidirectional GRU networks-based next POI category prediction for healthcare[J]. International Journal of Intelligent Systems, 2022, 37(7): 4020−4040 doi: 10.1002/int.22710
|
[155] |
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C/OL] //Proc of the 5th Int Conf on Learning Representations. 2017 [2022-05-05].https://openreview.net/pdf?id=SJU4ayYgl
|
[156] |
Velickovic P, Cucurull G, Casanova A, et al. Graph attention net-works[C/OL] //Proc of the 6th Int Conf on Learning Representations. 2018 [2022-05-05].https://openreview.net/pdf?id=rJXMpikCZ
|
[157] |
Zhong Ting, Wang Tianliang, Wang Jiahao, et al. Multiple-aspect attentional graph neural networks for online social network user localization[J]. IEEE Access, 2020, 8: 95223−95234 doi: 10.1109/ACCESS.2020.2993876
|
[158] |
Zhou Fan, Wang Tianliang, Zhong Ting, et al. Identifying user geolocation with hierarchical graph neural networks and explainable fusion[J/OL]. Information Fusion, 2022 [2023-03-29].https://www.sciencedirect.com/science/article/pii/S1566253521002293
|
[159] |
Miyazaki T, Rahimi A, Cohn T, et al. Twitter geolocation using knowledge-based methods[C] //Proc of the 4th Workshop on Noisy User-generated Text. Stroudsburg, PA: ACL, 2018: 7−16
|
[160] |
Tian Hechan, Zhang Meng, Luo Xiangyang, et al. Twitter user location inference based on representation learning and label propagation[C] //Proc of the Web Conf. New York: ACM, 2020: 2648−2654
|
[161] |
Elmi S, Tan K L. Influence-based deep network for next POIs prediction[C] //Proc of the 44th European Conf on Information Retrieval. Berlin: Springer, 2022: 170−183
|
[162] |
Wu Xian, Huang Chao, Zhang Chuxu, et al. Hierarchically structured transformer networks for fine-grained spatial event forecasting[C] //Proc of the Web Conf 2020. New York ACM, 2020: 2320–2330
|
[163] |
Chaitanya J. Transformers are graph neural networks [EB/OL]. 2020 [2022-05-05].https://graphdeeplearning.github.io/post/transformers-are-gnns/
|
[164] |
Tsochantaridis I, Joachims T, Hofmann T, et al. Large margin methods for structured and interdependent output variables[J]. Journal of Machine Learning Research, 2005, 6(9): 1453−1484
|
[165] |
Guo S, Chang Mingwei, Kiciman E. To link or not to link? A study on end-to-end tweet entity linking[C] //Proc of the 2013 Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2013: 1020−1030
|
[166] |
Hua Wen, Zheng Kai, Zhou Xiaofang. Microblog entity linking with social temporal context[C] //Proc of the 2015 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2015: 1761−1775
|
[167] |
Shen Wei, Wang Jianyong, Luo Ping, et al. Linking named entities in tweets with knowledge base via user interest modeling[C] //Proc of the 19th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2013: 68−76
|
[168] |
Do T H, Nguyen D M, Tsiligianni E, et al. Multiview deep learning for predicting Twitter users’ location[J]. arXiv preprint, arXiv: 1712. 08091, 2017
|
[169] |
Wang Dong, Al Amin M T , Abdelzaher T, et al. Provenance-assisted classification in social networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(4): 624−637
|
[170] |
Chong W H, Lim E P. Tweet geolocation: Leveraging location, user and peer signals[C] //Proc of the 2017 ACM on Conf on Information and Knowledge Management. New York: ACM, 2017: 1279−1288
|
[171] |
Likhyani A, Padmanabhan D, Bedathur S, et al. Inferring and exploiting categories for next location prediction[C] //Proc of the 24th Int Conf on World Wide Web. New York: ACM, 2015: 65−66
|
[172] |
Rahimi A, Cohn T, Baldwin T. Twitter user geolocation using a unified text and network prediction model[C] //Proc of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int Joint Conf on Natural Language Processing of the Asian Federation of Natural Language Processing. Stroudsburg, PA: ACL, 2015: 630−636
|
[173] |
Rahimi A, Vu D, Cohn T, et al. Exploiting text and network context for geolocation of social media users[C] //Proc of the 2015 Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2015: 1362−1367
|
[174] |
Han B, Cook P, Baldwin T. Text-based Twitter user geolocation prediction[J]. Journal of Artificial Intelligence Research, 2014, 49: 451−500 doi: 10.1613/jair.4200
|
[175] |
Liao Dongliang, Zhong Yuan, Li Jing. Location prediction through activity purpose: Integrating temporal and sequential models[C] //Proc of Pacific-Asia Conf on Knowledge Discovery and Data Mining. Berlin: Springer, 2017: 711−723
|
[176] |
Han B, Cook P, Baldwin T. Geolocation prediction in social media data by finding location indicative words[C]//Proc of the Int Conf on Computational Linguistics 2012. New York: ACM, 2012: 1045−1062
|
[177] |
Gao Huiji, Tang Jiliang, Liu Huan. Exploring social-historical ties on location-based social networks[C] //Proc of the 6th Int AAAI Conf on Weblogs and Social Media. Palo Alto, CA: AAAI, 2012: 114−121
|
[178] |
Mazumdar P, Patra B K, Babu K S, et al. Hidden location prediction using check-in patterns in location-based social networks[J]. Knowledge and Information Systems, 2018, 57(3): 571−601 doi: 10.1007/s10115-018-1170-5
|
[179] |
Hai N T, Nguyen H H, Thai-Nghe N. A mobility prediction model for location-based social networks[C] //Proc of the Asian Conf on Intelligent Information and Database Systems. Berlin: Springer, 2016: 106−115
|
[180] |
Wong M H, Tseng V S, Tseng J C, et al. Long-term user location prediction using deep learning and periodic pattern mining[C] //Proc of the Int Conf on Advanced Data Mining and Applications. Berlin: Springer, 2017: 582−594
|
[181] |
Wang Yingzi, Yuan N J, Lian Defu, et al. Regularity and conformity: Location prediction using heterogeneous mobility data[C] //Proc of the 21st ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1275−1284
|
[182] |
Gao Huiji, Tang Jiliang, Hu Xia, et al. Modeling temporal effects of human mobile behavior on location-based social networks[C] //Proc of the 22nd ACM Int Conf on Information & Knowledge Management. New York: ACM, 2013: 1673−1678
|
[183] |
Li Xutao, Cong Gao, Li Xiaoli, et al. Rank-geofm: A ranking based geographical factorization method for point of interest recommendation[C] //Proc of the 38th Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2015: 433−442
|
[184] |
Pang Jun, Zhang Yang. Exploring communities for effective location prediction[C] //Proc of the 24th Int Conf on World Wide Web. New York: ACM, 2015: 87−88
|
[185] |
Yang Dingqi, Qu Bingqing, Yang Jie, et al. Revisiting user mobility and social relationships in lbsns: A hypergraph embedding approach[C] //Proc of the World Wide Web Conf. New York: ACM, 2019: 2147−2157
|
[186] |
Hristova D, Williams M J, Musolesi M, et al. Measuring urban social diversity using interconnected geo-social networks[C]//Proc of the 25th Int Conf on World Wide Web. New York: ACM, 2016: 21−30
|
[187] |
Rahimi A, Cohn T, Baldwin T. Semi-supervised user geolocation via graph convolutional networks[C] //Proc of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2018: 2009−2019
|
[1] | Fu Maozhong, Hu Haiyang, Li Zhongjin. Dynamic Resource Scheduling Method for GPU Cluster[J]. Journal of Computer Research and Development, 2023, 60(6): 1308-1321. DOI: 10.7544/issn1000-1239.202220149 |
[2] | Wang Ziyi, Hu Xiaoyu, Wang Xin, Zhang Xinggong, Cao Zhen, Zheng Kai, Cui Yong. Fairness Measurement and Algorithm Design of Network Transmission: A Case Study of Video Applications[J]. Journal of Computer Research and Development, 2023, 60(4): 810-827. DOI: 10.7544/issn1000-1239.202330022 |
[3] | Zhong Lujie, Wang Mu. Blockchain-Enpowered Cooperative Resource Allocation Scheme for Computing First Network[J]. Journal of Computer Research and Development, 2023, 60(4): 750-762. DOI: 10.7544/issn1000-1239.202330002 |
[4] | Fang Rongqiang, Wang Jing, Yao Zhicheng, Liu Chang, Zhang Weigong. Modeling Computational Feature of Multi-Layer Neural Network[J]. Journal of Computer Research and Development, 2019, 56(6): 1170-1181. DOI: 10.7544/issn1000-1239.2019.20190111 |
[5] | Xu Hongzhi, Li Renfa, Zeng Lining. Parallel Task Scheduling for Resource Consumption Minimization with Reliability Constraint[J]. Journal of Computer Research and Development, 2018, 55(11): 2569-2583. DOI: 10.7544/issn1000-1239.2018.20170893 |
[6] | Xu Ran, Wang Wendong, Gong Xiangyang, Que Xirong. Delay-Aware Resource Scheduling Optimization in Network Function Virtualization[J]. Journal of Computer Research and Development, 2018, 55(4): 738-747. DOI: 10.7544/issn1000-1239.2018.20170926 |
[7] | WeiWei, LiuYang, YangWeidong. A Fast Approximation Algorithm for the General Resource Placement Problem in Cloud Computing Platform[J]. Journal of Computer Research and Development, 2016, 53(3): 697-703. DOI: 10.7544/issn1000-1239.2016.20148323 |
[8] | Fan Pengyi, Wang Hui, Jiang Zhihong, and Li Pei. Measurement of Microblogging Network[J]. Journal of Computer Research and Development, 2012, 49(4): 691-699. |
[9] | Xie Yingke, Wang Jiandong, Zhu Chao, Zhao Zili, Han Chengde. High Precision Timestamps in Network Measurement[J]. Journal of Computer Research and Development, 2010, 47(12). |
[10] | Jiao Jian, Yao Shan, Li Xiaojian. Research on Network Bidirectional Topology Discovery Based on Measurer by Spreading[J]. Journal of Computer Research and Development, 2010, 47(5): 903-910. |