• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Jian, Fu Yinjin, Fang Yanmei, Liu Yao, Fu Wei, Cao Xiaochun, Xiao Nong. A Review on Encrypted Data Deduplication Attacks and Countermeasures in Cloud Storage[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440379
Citation: Wu Jian, Fu Yinjin, Fang Yanmei, Liu Yao, Fu Wei, Cao Xiaochun, Xiao Nong. A Review on Encrypted Data Deduplication Attacks and Countermeasures in Cloud Storage[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440379

A Review on Encrypted Data Deduplication Attacks and Countermeasures in Cloud Storage

Funds: This work is supported by the National Key R&D Program of China under Grant (2022YFB4500304), Natural Science Foundation of China (62332021, 61832020, 62276273), and CCF-The Huawei Populus euphratica Fund-Storage Special Project (CCF-HuaweiST2021001).
More Information
  • Author Bio:

    Wu Jian: born in 2000. Master student. His main research interests include data deduplication and cloud security

    Fu Yinjin: born in 1984. PhD, Associate professor, master supervisor, senior member of CCF. His main research interests include data reduction, cloud storage and big data security

    Fang Yanmei: born in 1966. PhD, associate professor, senior member of CCF. Her main research interests include machine learning & deep learning, multimedia information security and artificial intelligence security

    Liu Yao: born in 1987. PhD, assistant professor, member of CCF. His research interest focus on digital integrated circuit design, hardware security, and computer security

    Fu Wei: born in 1978. PhD, associate professor, member of CCF. His main research interests include information security, network security and cloud storage security

    Cao Xiaochun: born in 1980. PhD, professor, PhD supervisor, distinguished member of CCF. His research interests include content security in cyberspace, artificial intelligence, and computer vision

    Xiao Nong: born in 1969. PhD , professor, PhD supervisor, fellow of CCF. His main research interests include computer architecture, network computing, and big data storage

  • Received Date: May 27, 2024
  • Revised Date: February 06, 2025
  • Accepted Date: March 02, 2025
  • Available Online: March 02, 2025
  • Data deduplication is a vital technology for efficiently managing big data, widely adopted in cloud storage systems to reduce redundancy and save space. To integrate deduplication with encryption, convergent encryption has become a common approach. This method allows for the encryption of data while still enabling deduplication by producing the same ciphertext for identical plaintexts. However, cloud service providers' outsourcing models and the deterministic nature of convergent encryption can introduce data security issues. The encryption patterns of data can become predictable, potentially exposing sensitive information to attackers, which may create serious security implications. As a result, encrypted data deduplication has emerged as an important research topic in cloud storage security. This paper firstly introduces the concept of data deduplication, encrypted deduplication algorithms, and discusses the security challenges associated with encrypting and deduplicating data in cloud storage. It then reviews the current research status from both attack and defense perspectives, covering three main types of attacks: brute force attacks, which try to decrypt data through extensive guessing; frequency analysis attacks, which exploit frequency characteristics in ciphertexts; and side-channel attacks, which leverage information from response or traffic characteristics. For each attack type, representative defense strategies are analyzed along with their strengths and weaknesses. Finally, the paper highlights the challenges faced by existing encrypted data deduplication defenses and suggests future research directions aimed at improving these techniques.

  • [1]
    Statista. Data created [EB/OL]. [2024-11-21]. https://www.statista.com/statistics/871513/worldwide-data-created/
    [2]
    Meyer D T, Bolosky W J. A study of practical deduplication[C]//Proc of the 9th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2011: 229−241
    [3]
    Wallace G, Douglis F, Qian H, et al. Characteristics of backup workloads in production systems[C/OL]//Proc of the 10th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2012 [2025-01-14]. https://www.usenix.org/system/files/conference/fast12/wallace2-9-12.pdf
    [4]
    付印金,肖侬,刘芳. 重复数据删除关键技术研究进展[J]. 计算机研究与发展,2012,49(1):12−20

    Fu Yinjin, Xiao Nong, Liu Fang. Research and development on key techniques of data deduplication[J]. Journal of Computer Research and Development, 2012, 49(1): 12−20(in Chinese)
    [5]
    Zhu B, Li Kai, Patterson R H. Avoiding the disk bottleneck in the data domain deduplication file system[C]//Proc of the 6th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2008: 269−282
    [6]
    Heen O, Neumann C, Montalvo L, et al. Improving the resistance to side-channel attacks on cloud storage services[C/OL]//Proc of the 5th IEEE Int Conf on New Technologies, Mobility and Security. Piscataway, NJ: IEEE, 2012 [2025-01-14]. https://ieeexplore.ieee.org/docu ment/6208705
    [7]
    Xie Qingyuan, Zhang Chen, Jia Xiaohua. Security-aware and efficient data deduplication for edge-assisted cloud storage systems[J]. IEEE Transactions on Services Computing, 2023, 16(3): 2191−2202
    [8]
    Douceur J R, Adya A, Bolosky W J, et al. Reclaiming space from duplicate files in a serverless distributed file system[C]//Proc of the 22nd IEEE Int Conf on Distributed Computing Systems. Piscataway, NJ: IEEE, 2002: 617−624
    [9]
    Bellare M, Keelveedhi S, Ristenpart T. Message-locked encryption and secure deduplication[C]//Proc of the 32nd Annual Int Conf on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2013: 296−312
    [10]
    Li Jingwei, Lee P P C, Tan Chufeng, et al. Information leakage in encrypted deduplication via frequency analysis[J]. ACM Transactions on Storage, 2020, 16(1): 1−30
    [11]
    Harnik D, Pinkas B, Shulman-Peleg A. Side channels in cloud services: Deduplication in cloud storage[J]. IEEE Security & Privacy, 2010, 8(6): 40−47
    [12]
    Halevi S, Harnik D, Pinkas B, et al. Proofs of ownership in remote storage systems[C]//Proc of the 18th ACM Conf on Computer and Communications Security. New York: ACM, 2011: 491−500
    [13]
    Bellare M, Keelveedhi S, Ristenpart T. DupLESS: Server-aided encryption for deduplicated storage[C]//Proc of the 22nd USENIX Conf on Security. Berkeley, CA: USENIX Association, 2013: 179−194
    [14]
    Chien HY, Jan JK, Tseng YM. RSA-based partially blind signature with low computation[C]//Proc of the 8th Int Conf on Parallel and Distributed Systems. Piscataway, NJ: IEEE, 2001: 385−389
    [15]
    Chen Rongmao, Mu Yi, Yang Guoming, et al. BL-MLE: Block-level message-locked encryption for secure large file deduplication[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(12): 2643−2652 doi: 10.1109/TIFS.2015.2470221
    [16]
    Zhao Yongjun, Chow S S M. Updatable block-level message-locked encryption[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(4): 1620−1631 doi: 10.1109/TDSC.2019.2922403
    [17]
    Ha Guanxiong, Jia Chunfu, Chen Yuchen, et al. A secure client-side deduplication scheme based on updatable server-aided encryption[J]. IEEE Transactions on Cloud Computing, 2023, 11(4): 3672−3684 doi: 10.1109/TCC.2023.3311760
    [18]
    Jiang Tao, Yuan Xu, Yuan Chen, et al. FuzzyDedup: Secure fuzzy deduplication for cloud storage[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(3): 2466−2483 doi: 10.1109/TDSC.2022.3185313
    [19]
    Song Mingyang, Hua Zhongyun. Zheng Yifeng, et al. SimLESS: A secure deduplication system over similar data in cloud media sharing[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4700−4715 (该期刊目前只有卷数).

    Song Mingyang, Hua Zhongyun. Zheng Yifeng, et al. SimLESS: A secure deduplication system over similar data in cloud media sharing[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 4700−4715 (该期刊目前只有卷数).
    [20]
    Li Jin, Chen Xiaofeng, Li Mingqiang, et al. Secure deduplication with efficient and reliable convergent key management[J]. IEEE Transactions on Paralled Distributed Systems, 2014, 25(6): 1615−1625 doi: 10.1109/TPDS.2013.284
    [21]
    Iwamoto M, Yamamoto H. Strongly secure ramp secret sharing schemes[C]// Proc of the 2nd Int Symp on Information Theory. Piscataway, NJ: IEEE, 2005: 1221−1225
    [22]
    LI Mingqiang, Qin Chuan, Li Jingwei, et al. CDStore: Toward reliable, secure, and cost-efficient cloud storage via convergent dispersal[J]. IEEE Internet Computing, 2016, 20(3): 45−53 doi: 10.1109/MIC.2016.45
    [23]
    Resch J, Plank J. AONT-RS: blending security and performance indispersed storage systems[C/OL]//Proc of the 9th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2011 [2025-01-14]. https://www.usenix.org/legacy/event/fast11/tech/full_papers/Resch.pdf
    [24]
    高文静,咸鹤群,程润辉. 基于双层加密和密钥共享的云数据去重方法[J]. 计算机学报,2021,44(11):2203−2215 doi: 10.11897/SP.J.1016.2021.02203

    Gao Wenjing, Xian Hequn, Cheng Runhui. A cloud data deduplication method based on double-layered encryption and key sharing[J]. Chinese Journal of Computers, 2021, 44(11): 2203−2215(in Chinese) doi: 10.11897/SP.J.1016.2021.02203
    [25]
    Cao Tianjie, Lin Dongdai, Xue Rui. A randomized RSA-based partially blind signature scheme for electronic cash[J]. Computers & Security, 2005, 24(1): 44−49
    [26]
    Ren Yanjing, Li Jingwei, Yang Zuoru, et al. Accelerating encrypted deduplication via SGX[C]//Proc of the 29th USENIX Annual Technical Conf. Berkeley, CA: USENIX Association, 2021: 957−971
    [27]
    Intel. Intel SGX [EB/OL]. [2025-01-14]. https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
    [28]
    Yang Zuoru, Li Jingwei, Lee P P C. Secure and lightweight deduplicated storage via shielded deduplication-before-encryption[C]//Proc of the 30th USENIX Annual Technical Conf. Berkeley, CA: USENIX Association, 2022: 37−52
    [29]
    Liu Jian, Asokan N, Pinkas B. Secure deduplication of encrypted data without additional independent servers[C]//Proc of the 22nd ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2015: 874−885
    [30]
    Bellovin S M, Merritt M. Encrypted key exchange: Password-based protocols secure against dictionary attacks[C]//Proc of the 13th IEEE Computer Society Symp on Research in Security and Privacy. Piscataway, NJ: IEEE, 1992: 72−84
    [31]
    哈冠雄,贾巧雯,陈杭,等. 无第三方服务器的基于数据流行度的加密去重方案[J]. 通信学报,2022,43(8):17−29 doi: 10.11959/j.issn.1000-436x.2022151

    Ha Guanxiong, Jia Qiaowen, Chen Hang, et al. Data popularity-based encrypted deduplication scheme without third-party servers[J]. Journal on Communications, 2022, 43(8): 17−29 (in Chinese) doi: 10.11959/j.issn.1000-436x.2022151
    [32]
    Cormode G, Muthukrishnan S. An improved data stream summary: The Count-Min sketch and its applications[J]. Journal of Algorithms, 2005, 55(1): 58−75 doi: 10.1016/j.jalgor.2003.12.001
    [33]
    Merkle R C. Secure communications over insecure channels[J]. Communications of the ACM, 1978, 21(4): 294−299 doi: 10.1145/359460.359473
    [34]
    Mcquoid I, Rosulek M, Roy L. Minimal symmetric PAKE and 1-out-of-N OT from programmable-once public functions[C]//Proc of the 27th ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2020: 425−442
    [35]
    咸鹤群,刘红燕,张曙光,等. 可验证的云存储安全数据删重方法[J]. 软件学报,2020,31(2):455−470

    Xian Hequn, Liu Hongyan, Zhang Shuguang, et al. Verifiable secure data deduplication method in cloud storage[J]. Journal of Software, 2020, 31(2): 455−470 (in Chinese)
    [36]
    Xinjun Du, Ying Wang, Jianhua Ge, et al. An ID based broadcast encryptio -n scheme for key distribution[J]. IEEE Transactions on Broadcasting. 2005, 51(2): 264−266
    [37]
    Wikipedia. Frequency analysis [EB/OL]. [2024-04-08]. https://en.wiki pedia.org/wiki/Frequency_analysis
    [38]
    Li Jingwei, Wei Guoli, Liang Jiacheng, et al. Revisiting frequency analysis against encrypted deduplication via statistical distribution[C]//Proc of the 41st IEEE Conf on Computer Communications. Piscataway, NJ: IEEE, 2022: 290−299
    [39]
    Stanek J, Sorniotti A, Androulaki E, et al. A secure data deduplication scheme for cloud storage[C]//Proc of the 18th International Conf on Financial Cryptography and Data Security. Berlin: Springer, 2014: 99−118
    [40]
    Stanek J, Kencl L. Enhanced secure thresholded data deduplication scheme for cloud storage[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(4): 694−707 doi: 10.1109/TDSC.2016.2603501
    [41]
    Yang Zuoru, Li Jingwei, Ren Yanjin, et al. Tunable encrypted deduplication with attack-resilient key management[J]. ACM Transactions on Storage, 2022, 18(4): 1−38
    [42]
    Xie Qingyuan, Zhang Chen, Jia Xiaohua. Security-aware and efficient data deduplication for edge-Assisted cloud storage systems[J]. IEEE Transactions on Services Computing, 2023(16): 2191−2202
    [43]
    Miranda M, Esteves T, Portela B, et al. S2Dedup: SGX-enabled secure deduplication[C/OL]//Proc of the 14th ACM Int Conf on Systems and Storage. New York: ACM, 2021 [2025-01-14]. https://doi.org/10.1145/3456727.3463773
    [44]
    Luo Shengmei, Zhang Guangyan, Wu Chengwen, et al. Boafft: Distributed deduplication for big data storage in the cloud[J]. IEEE Transactions on Cloud Computing, 2015, 8(4): 1199−1211
    [45]
    Chevallier-Mames B, Ciet M, Joye M. Low-cost solutions for preventing simple side-channel analysis: side-channel atomicity[J]. IEEE Transactions on Computers, 2004, 53(6): 760−768 doi: 10.1109/TC.2004.13
    [46]
    Mulazzani M, Schrittwieser S, Leithner M, et al. Dark clouds on the horizon: Using cloud storage as attack vector and online slack space[C]//Proc of the 20th USENIX Security Symp. Berkeley, CA: USENIX Association, 2011: 5−16
    [47]
    Yu Chia-mu, Gochhayat S P, Conti M, et al. Privacy aware data deduplication for side channel in cloud storage[J]. IEEE Transactions on Cloud Computing, 2020, 8(2): 597−609 doi: 10.1109/TCC.2018.2794542
    [48]
    Ha Guanxiong, Chen Hang, Jia Chunfu, et al. Threat model and defense scheme for side-channel attacks in client-side deduplication[J]. Tsinghua Science and Technology, 2022, 28(1): 1−12
    [49]
    Vestergaard R, Zhang Qi, Lucani D E, et al. CIDER: A low overhead approach to privacy aware client-side deduplication[C/OL]//Proc of the 20th IEEE Global Communications Conf. Piscataway, NJ: IEEE, 2021 [2025-01-14]. https://ieeexplore.ieee.org/document/9348272
    [50]
    Tang Xin, Liu Zhi, Shao Yan, et al. Side channel attack resistant cross-user generalized deduplication for cloud storage[C]//Proc of the 28th IEEE Int Conf on Communications. Piscataway, NJ: IEEE. 2022: 998−1003
    [51]
    Li Jingwei, Ren Yanjing, Lee P P C, et al. FeatureSpy: Detecting learning-content attacks via feature inspection in secure deduplicated storage [C/OL]//Proc of the 42nd IEEE Int Conf on Computer Communications, Piscataway, NJ: IEEE, 2023 [2025-01-14]. https://ieeexplore.ieee.org/ document/10228971
    [52]
    Dwork C, Lei Jing. Differential privacy and robust statistics[C]//Proc of the 41st Annual ACM Symp on Theory of Computing. New York: ACM, 2009: 371−380
    [53]
    Shin Y, Kim K. Differentially private client-side data deduplication protocol for cloud storage services[J]. Security and Communication Networks, 2015, 8(12): 2114−2123 doi: 10.1002/sec.1159
    [54]
    Zuo Pengfei, Hua Yu, Wang Cong, et al. Mitigating traffic-based side channel attacks in bandwidth-efficient cloud storage[C]//Proc of the 32nd IEEE Int Parallel and Distributed Processing Symp. Piscataway, NJ: IEEE, 2018: 1153−1162
    [55]
    Tang Xin, Chen Xiong, Zhou Ran, et al. Marking based obfuscation strategy to resist side channel attack in cross-user deduplication for cloud storage[C]//Proc of the 21st IEEE Int Conf on Trust, Security and Privacy in Computing and Communications. Piscataway, NJ: IEEE, 2022: 547−555
    [56]
    Koo D, Shin Y, Yun J, et al. A hybrid deduplication for secure and efficient data outsourcing in fog computing[C]//Proc of the 8th IEEE Int Conf on Cloud Computing Technology and Science. Piscataway, NJ: IEEE, 2016: 285−293
    [57]
    Shin Y, Koo D, Yun J, et al. Decentralized server-aided encryption for secure deduplication in cloud storage[J]. IEEE Transactions on Services Computing, 2020, 13(6): 1021−1033
    [58]
    Xue Yang, Lu Rongxing, Choo K K R, et al. Achieving efficient and privacy-preserving cross-domain big data deduplication in cloud[J]. IEEE Transactions on Big Data, 2022, 8(1): 73−84. doi: 10.1109/TBDATA.2017.2721444
    [59]
    Song Mingyang, Hua Zhongyun, Zheng Yifeng, et al. FCDedup: A two-level deduplication system for encrypted data in fog computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(10): 2642−2656 doi: 10.1109/TPDS.2023.3298684
    [60]
    Shin H, Koo D, Hur J. Secure and efficient hybrid data deduplication in edge computing[J]. ACM Transactions on Internet Technology, 2022, 22(3): 1−25
    [61]
    Fu Yinjin, Xiao Nong, Chen Tao, et al. Fog-to-multicloud cooperative ehealth data management with application-aware secure deduplication[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(5): 3136−3148 doi: 10.1109/TDSC.2021.3086089
    [62]
    Merkle RC. Protocols for public key cryptosystems[C]//Proc of the 1st IEEE Symp on Security and Privacy. Piscataway, NJ: IEEE, 1980: 122−134
    [63]
    Blasco J, Di P R, Orfila A, et al. A tunable proof of ownership scheme for deduplication using bloom filters[C]//Proc of the 2nd IEEE Conf on Communications and Network Security. Piscataway, NJ: IEEE, 2014: 481−489
    [64]
    Yuan Haoran, Chen Xiaofeng, Jiang Tao, et al. DedupDUM: Secure and scalable data deduplication with dynamic user management[J]. Information Sciences, 2018, 456: 159−173 doi: 10.1016/j.ins.2018.05.024
    [65]
    Jiang Shurong, Jiang Tao and Wang Liangmin. Secure and efficient cloud data deduplication with ownership management[J]. IEEE Transactions on Services Computing, 2020, 13(6): 1152−1165
    [66]
    Tian Guohua, Hu Yuhan, Wei Jianghong, et al. Blockchain-based secure deduplication and shared auditing in decentralized storage[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(6): 3941−3954. doi: 10.1109/TDSC.2021.3114160
    [67]
    Guohua Tian, Hua Ma, Ying Xie, et al. Randomized deduplication with ownership anagement and data sharing in cloud storage[J]. Journal of Information Security and Applications, 2020, 51: 2214−2126 (该期刊只有期数

    Guohua Tian, Hua Ma, Ying Xie, et al. Randomized deduplication with ownership anagement and data sharing in cloud storage[J]. Journal of Information Security and Applications, 2020, 51: 2214−2126 (该期刊只有期数)
    [68]
    Ma Xuewei, Yang Wenyuan, Zhu Yuesheng, et al. A secure and efficient data deduplication scheme with dynamic ownership management in cloud computing[C]//Proc of the 23rd IEEE Int Performance, Computing, and Communications Conf. Piscataway, NJ: IEEE, 2022: 194−201
    [69]
    Zhang Di, Le Junqing, Mu Nankun, et al. Secure and efficient data deduplication in jointcloud storage[J]. IEEE Transactions on Cloud Computing, 2023, 11(1): 156−167 doi: 10.1109/TCC.2021.3081702
    [70]
    Cui Helei, Duan Huayi, Qin Zhan, et al. SPEED: Accelerating enclave applications via secure deduplication[C]//Proc of the 39th IEEE Int Conf on Distributed Computing Systems. Piscataway, NJ: IEEE, 2019: 1072−1082
    [71]
    Dang H, Chang E C. Privacy-preserving data deduplication on trusted processors[C]//Proc of the 10th IEEE Int Conf on Cloud Computing. Piscataway, NJ: IEEE, 2017: 66−73
    [72]
    李明煜,夏虞斌,陈海波. 面向 SGX2 代新型可信执行环境的内存优化系统[J]. 软件学报,2022,33(6):2012−2029

    Li Mingyu, Xia Yubin, Chen Haibo. Memory optimization system for SGXv2 trusted execution environment[J]. Journal of Software, 2022, 33(6): 2012−2029 (in Chinese)
  • Related Articles

    [1]Tai Jianwei, Yang Shuangning, Wang Jiajia, Li Yakai, Liu Qixu, Jia Xiaoqi. Survey of Adversarial Attacks and Defenses for Large Language Models[J]. Journal of Computer Research and Development, 2025, 62(3): 563-588. DOI: 10.7544/issn1000-1239.202440630
    [2]Xu Dongyue, Tian Yunzhe, Chen Kang, Li Yike, Wu Yalun, Tong Endong, Niu Wenjia, Liu Jiqiang, Shi Zhongzhi. Survey on Adversarial Attack and Defense for Signal Modulation Recognition[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330826
    [3]Qin Zhen, Zhuang Tianming, Zhu Guosong, Zhou Erqiang, Ding Yi, Geng Ji. Survey of Security Attack and Defense Strategies for Artificial Intelligence Model[J]. Journal of Computer Research and Development, 2024, 61(10): 2627-2648. DOI: 10.7544/issn1000-1239.202440449
    [4]Liu Jialang, Guo Yanming, Lao Mingrui, Yu Tianyuan, Wu Yulun, Feng Yunhao, Wu Jiazhuang. Survey of Backdoor Attack and Defense Algorithms Based on Federated Learning[J]. Journal of Computer Research and Development, 2024, 61(10): 2607-2626. DOI: 10.7544/issn1000-1239.202440487
    [5]Zheng Mingyu, Lin Zheng, Liu Zhengxiao, Fu Peng, Wang Weiping. Survey of Textual Backdoor Attack and Defense[J]. Journal of Computer Research and Development, 2024, 61(1): 221-242. DOI: 10.7544/issn1000-1239.202220340
    [6]Zhang Weijuan, Bai Lu, Ling Yuqing, Lan Xiao, Jia Xiaoqi. Cache Side-Channel Attacks and Defenses[J]. Journal of Computer Research and Development, 2023, 60(1): 206-222. DOI: 10.7544/issn1000-1239.202110774
    [7]Li Minghui, Jiang Peipei, Wang Qian, Shen Chao, Li Qi. Adversarial Attacks and Defenses for Deep Learning Models[J]. Journal of Computer Research and Development, 2021, 58(5): 909-926. DOI: 10.7544/issn1000-1239.2021.20200920
    [8]Yu Yang, Xia Chunhe, Wang Xinghe. A Cloud Model Based Trust Evaluation Model for Defense Agent[J]. Journal of Computer Research and Development, 2015, 52(10): 2178-2191. DOI: 10.7544/issn1000-1239.2015.20150417
    [9]Jiang Wei, Fang Binxing, Tian Zhihong, Zhang Hongli. Research on Defense Strategies Selection Based on Attack-Defense Stochastic Game Model[J]. Journal of Computer Research and Development, 2010, 47(10): 1714-1723.
    [10]Li Lang, Li Renfa, Tong Yuanman, Zhang Jingjing, Edwin H-M Sha. Development on Power Analysis Attack and Defense of Embedded Cipher Chip[J]. Journal of Computer Research and Development, 2010, 47(4): 595-604.
  • Cited by

    Periodical cited type(18)

    1. 徐宁,李静秋,王岚君,刘安安. 时序特性引导下的谣言事件检测方法评测. 南京大学学报(自然科学). 2025(01): 71-82 .
    2. 崔蒙蒙,刘井平,阮彤,宋雨秋,杜渂. 基于双重多视角表示的目标级隐性情感分类. 计算机工程. 2024(01): 79-90 .
    3. 张乐怡,周怡洁,俞定国,闫燕勤. 媒介变迁下的谣言传播研究. 新媒体研究. 2024(14): 12-16 .
    4. 王世雄,吴泽政. 基于异质信息网络表征学习的微博虚假信息甄别研究. 情报杂志. 2024(12): 152-160 .
    5. 陈雄逸,许力,张欣欣,尤玮婧. 社交网络基于意见领袖的谣言抑制方案. 信息安全研究. 2023(01): 57-65 .
    6. 张欣欣 ,许力 ,徐振宇 . 基于网络模体的移动社会网络信息可控传播方法. 电子与信息学报. 2023(02): 635-643 .
    7. 杨晓晖,王卫宾. 基于门控图神经网络的谣言检测模型. 燕山大学学报. 2023(01): 73-81 .
    8. 孙书魁,范菁,李占稳,曲金帅,路佩东. 人工智能在新型冠状病毒肺炎中的研究综述. 计算机工程与应用. 2023(05): 28-39 .
    9. 陈卓敏,王莉,朱小飞,王子康. 基于对抗图增强对比学习的虚假新闻检测. 中文信息学报. 2023(06): 137-146 .
    10. 鲁贻锦,吴蕾. 基于大数据驱动技术的媒体风险感知模型研究. 佳木斯大学学报(自然科学版). 2023(06): 52-56 .
    11. 许云红,崔乐靖,朱南丽,郑娜娜. 社交媒体用户谣言传播行为的影响因素研究综述. 新媒体研究. 2023(24): 14-17+33 .
    12. 龙小农,靳旭鹏. 新冠疫情、信息疫情与政治疫情的互动关系及作用机制. 现代传播(中国传媒大学学报). 2022(02): 66-76 .
    13. 杨秀璋,刘建义,任天舒,宋籍文,武帅,姜婧怡,陈登建,周既松,李娜. 基于改进LDA-CNN-BiLSTM模型的社交媒体情感分析研究. 现代计算机. 2022(02): 29-36 .
    14. 张放,范琳琅. 公共危机中社交媒体辟谣信息采纳的关键要素探究——基于新冠疫情微博辟谣文本的计算分析. 新闻界. 2022(10): 75-85 .
    15. 朱梦蝶,付少雄,郑德俊,李杨. 文献视角下的社交媒体健康谣言研究:特征、传播与治理. 图书情报知识. 2022(05): 131-143 .
    16. 肖喜珠,杨闻远,高慧敏,高世奇,郭书恒,路思玲,聂欣政,任书漫,王一民,温馨. “后真相”时代的风险感知与反击:青年社交媒体用户信息行为研究. 新媒体研究. 2022(21): 40-46 .
    17. 徐建民,王恺霖,吴树芳. 基于改进D-S证据理论的微博不可信用户识别研究. 数据分析与知识发现. 2022(12): 99-112 .
    18. 周晖. 国内外基于社交媒体的社会情绪对比分析. 中华医学图书情报杂志. 2022(12): 65-69 .

    Other cited types(21)

Catalog

    Article views (17) PDF downloads (6) Cited by(39)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return