• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yong, Jiang Shali, Liao Shizhong. Approximate Gaussian Kernel for Large-Scale SVM[J]. Journal of Computer Research and Development, 2014, 51(10): 2171-2177. DOI: 10.7544/issn1000-1239.2014.20130825
Citation: Liu Yong, Jiang Shali, Liao Shizhong. Approximate Gaussian Kernel for Large-Scale SVM[J]. Journal of Computer Research and Development, 2014, 51(10): 2171-2177. DOI: 10.7544/issn1000-1239.2014.20130825

Approximate Gaussian Kernel for Large-Scale SVM

More Information
  • Published Date: September 30, 2014
  • Training support vector machine (SVM) with nonlinear kernel functions on large-scale data is usually very time consuming. In contrast, there exist faster solvers to train the linear SVM. To utilize the computational efficiency of linear SVM without sacrificing the accuracy of nonlinear ones, in this paper, we present a method for solving large-scale nonlinear SVM based on an explicit description of an approximate Gaussian kernel. We first give the definition of the approximate Gaussian kernel, and establish the connection between approximate Gaussian kernel and Gaussian kernel, and also derive the error bound between these two kernel functions. Then, we present an explicit description of the reproducing kernel Hilbert space (RKHS) induced by the approximate Gaussian kernel. Thus, we can exactly depict the structure of the solutions of SVM, which can enhance the interpretability of the model and make us more deeply understand this method. Finally, we explicitly construct the feature mapping induced by the approximate Gaussian kernel, and use the mapped data as input of linear SVM. In this way, we can utilize existing efficient linear SVM to solve non-linear SVM on large-scale data. Experimental results show that the proposed method is efficient, and can achieve comparable classification accuracy to a normal nonlinear SVM.
  • Related Articles

    [1]Zhang Zhenyu, Jiang Yuan. Label Noise Robust Learning Algorithm in Environments Evolving Features[J]. Journal of Computer Research and Development, 2023, 60(8): 1740-1753. DOI: 10.7544/issn1000-1239.202330238
    [2]Yang Wang, Gao Mingzhe, Jiang Ting. A Malicious Code Static Detection Framework Based on Multi-Feature Ensemble Learning[J]. Journal of Computer Research and Development, 2021, 58(5): 1021-1034. DOI: 10.7544/issn1000-1239.2021.20200912
    [3]Qi Qing, Cao Jian, Liu Yancen. The Evolution of Software Ecosystem in GitHub[J]. Journal of Computer Research and Development, 2020, 57(3): 513-524. DOI: 10.7544/issn1000-1239.2020.20190615
    [4]Ai Ke, Ma Guoshuai, Yang Kaikai, Qian Yuhua. A Classification Method of Scientific Collaborator Potential Prediction Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2019, 56(7): 1383-1395. DOI: 10.7544/issn1000-1239.2019.20180641
    [5]Guo Yingjie, Liu Xiaoyan, Wu Chenxi, Guo Maozu, Li Ao. U-Statistics and Ensemble Learning Based Method for Gene-Gene Interaction Detection[J]. Journal of Computer Research and Development, 2018, 55(8): 1683-1693. DOI: 10.7544/issn1000-1239.2018.20180365
    [6]Zhang Hu, Tan Hongye, Qian Yuhua, Li Ru, Chen Qian. Chinese Text Deception Detection Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2015, 52(5): 1005-1013. DOI: 10.7544/issn1000-1239.2015.20131552
    [7]Gong Shu, Qu Youli, and Tian Shengfeng. Supervised Learning of an Automatic Noisy Semantic Unit Filter for Multi-Document Summarization[J]. Journal of Computer Research and Development, 2013, 50(4): 873-882.
    [8]Fu Zhongliang. A Universal Ensemble Learning Algorithm[J]. Journal of Computer Research and Development, 2013, 50(4): 861-872.
    [9]Li Ming and Zhou Zhihua. Online Semi-Supervised Learning with Multi-Kernel Ensemble[J]. Journal of Computer Research and Development, 2008, 45(12): 2060-2068.
    [10]Zhan Dechuan and Zhou Zhihua. Ensemble-Based Manifold Learning for Visualization[J]. Journal of Computer Research and Development, 2005, 42(9): 1533-1537.

Catalog

    Article views (1468) PDF downloads (783) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return