• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Ning, Du Chenglie, Li Jianliang, Liu Zhiqiang, Peng Han. Analysis and Verification of AADL Hierarchical Schedulers[J]. Journal of Computer Research and Development, 2015, 52(1): 167-176. DOI: 10.7544/issn1000-1239.2015.20130722
Citation: Fu Ning, Du Chenglie, Li Jianliang, Liu Zhiqiang, Peng Han. Analysis and Verification of AADL Hierarchical Schedulers[J]. Journal of Computer Research and Development, 2015, 52(1): 167-176. DOI: 10.7544/issn1000-1239.2015.20130722

Analysis and Verification of AADL Hierarchical Schedulers

More Information
  • Published Date: December 31, 2014
  • In the system based on a hierarchical scheduler, the processor is shared between several collaborative schedulers. Such schedulers are becoming more and more investigated and proposed in reallife applications. For example, the ARINC 653 international standard which defines programming interface for avionic real time operating systems provides such a kind of collaborative schedulers. This article focuses on the modeling and the schedulability analysis of hierarchical schedulers. We investigate the modeling of hierarchical schedulers with architecture analysis and design language (AADL). A model checking based method for analyzing the schedulability of AADL hierarchical schedulers is proposed. The AADL thread components and hierarchical schedulers are modeled as network of timed automatons. The schedulability is described as a set of temporal logic formulas. Then we use a model checker Uppaal to analyze and verify the schedulability of hierarchical schedulers. Our work shows that analyzing schedulability of AADL hierarchical schedulers by model checking is feasible. The method uses an exhaustive method to automate analyze the properties of a system by a model checker. Compared with related works, the proposed method produces more precise results.
  • Related Articles

    [1]Zhang Zilin, Liu Duo, Tan Yujuan, Wu Yu, Luo Longpan, Wang Weilüe, Qiao Lei. An Erasure-Coded Data Update Method for Distributed Storage Clusters[J]. Journal of Computer Research and Development, 2022, 59(11): 2451-2466. DOI: 10.7544/issn1000-1239.20210211
    [2]Chen Jinyin, Huang Guohan, Zhang Dunjie, Zhang Xuhong, Ji Shouling. GRD-GNN: Graph Reconstruction Defense for Graph Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1075-1091. DOI: 10.7544/issn1000-1239.2021.20200935
    [3]Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587
    [4]Tang Yingjie, Wang Fang, Xie Yanwen. An Efficient Failure Reconstruction Based on In-Network Computing for Erasure-Coded Storage Systems[J]. Journal of Computer Research and Development, 2019, 56(4): 767-778. DOI: 10.7544/issn1000-1239.2019.20170834
    [5]Fu Yingxun, Wen Shilin, Ma Li, Shu Jiwu. Survey on Single Disk Failure Recovery Methods for Erasure Coded Storage Systems[J]. Journal of Computer Research and Development, 2018, 55(1): 1-13. DOI: 10.7544/issn1000-1239.2018.20160506
    [6]Liu Hai, Li Xinghua, Ma Jianfeng. Rational Secret Sharing Scheme Based on Reconstruction Order Adjustment Mechanism[J]. Journal of Computer Research and Development, 2015, 52(10): 2332-2340. DOI: 10.7544/issn1000-1239.2015.20150511
    [7]Li Yibin, Jia Zhiping, Xie Shuai, and Liu Fucai. Partial Dynamic Reconfigurable WSN Node with Power and Area Efficiency[J]. Journal of Computer Research and Development, 2014, 51(1): 173-179.
    [8]Fan Liya, Zhang Fa, Wang Gongming, Liu Zhiyong. Algorithm Analysis and Efficient Parallelization of the Single Particle Reconstruction Software Package: EMAN[J]. Journal of Computer Research and Development, 2010, 47(12).
    [9]Zhang Hongcan and Xue Wei. Reliability Analysis of Cluster RAID5 Storage System[J]. Journal of Computer Research and Development, 2010, 47(4): 727-735.
    [10]Ma Yili, Fu Xianglin, Han Xiaoming, and Xu Lu. The Separation between Storage and Computation[J]. Journal of Computer Research and Development, 2005, 42(3).
  • Cited by

    Periodical cited type(5)

    1. 张钦宇,张智凯,安丽荣,杨君一,张瑞. 面向天基数据中心的编码修复数据流调度. 移动通信. 2023(07): 21-26 .
    2. 杨浩,李竣业. 电力用户多渠道自动缴费习惯预判预警系统设计. 信息技术. 2021(03): 155-160 .
    3. 包涵,王意洁,许方亮. 基于生成矩阵变换的跨数据中心纠删码写入方法. 计算机研究与发展. 2020(02): 291-305 . 本站查看
    4. 李慧,李贵洋,胡金平,周悦,江小玉,韩鸿宇. 基于分布式存储的OHitchhiker码. 计算机工程与设计. 2020(07): 1941-1946 .
    5. 严新成,陈越,巴阳,贾洪勇,朱彧. 云环境下支持可更新加密的分布式数据编码存储方案. 计算机研究与发展. 2019(10): 2170-2182 . 本站查看

    Other cited types(11)

Catalog

    Article views (1322) PDF downloads (674) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return