• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yufeng, Li Renfa. Graph Regularized Semi-Supervised Learning on Heterogeneous Information Networks[J]. Journal of Computer Research and Development, 2015, 52(3): 606-613. DOI: 10.7544/issn1000-1239.2015.20131147
Citation: Liu Yufeng, Li Renfa. Graph Regularized Semi-Supervised Learning on Heterogeneous Information Networks[J]. Journal of Computer Research and Development, 2015, 52(3): 606-613. DOI: 10.7544/issn1000-1239.2015.20131147

Graph Regularized Semi-Supervised Learning on Heterogeneous Information Networks

More Information
  • Published Date: February 28, 2015
  • Heterogeneous information networks, composed of multiple types of objects and links, are ubiquitous in real life. Therefore, effective analysis of large-scale heterogeneous information networks poses an interesting but critical challenge. Learning from labeled and unlabeled data via semi-supervised classification can lead to good knowledge extraction of the hidden network structure. However, although semi-supervised learning on homogeneous networks has been studied for decades, classification on heterogeneous networks has not been explored until recently. In this paper, we consider the semi-supervised classification problem on heterogeneous information networks with an arbitrary schema consisting of a number of object and link types. By applying graph regularization to preserve consistency over each relation graph corresponding to each type of links separately, we develop a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We propose an iterative framework on heterogeneous information network in which the information of labeled data can be spread to the adjacent nodes by iterative method until the steady state. We infer the class memberships of unlabeled data from those of labeled ones according to their proximities in the network. Experiments on the real DBLP data set clearly show that our approach outperforms the classic semi-supervised Learning methods.
  • Related Articles

    [1]Pan Youlin, Guo Shuai, Huang Xing, Liu Genggeng. Any-Angle Routing Algorithm for Microfluidic Biochips Driven by Flow Path[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440058
    [2]Liu Jingsen, Yuan Mengmeng, Li Yu. Robot Path Planning Based on Improved Salp Swarm Algorithm[J]. Journal of Computer Research and Development, 2022, 59(6): 1297-1314. DOI: 10.7544/issn1000-1239.20201016
    [3]Zheng Bolong, Ming Lingfeng, Hu Qi, Fang Yixiang, Zheng Kai, Li Guohui. Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 329-341. DOI: 10.7544/issn1000-1239.20210905
    [4]Wu Jinjin, Liu Quan, Chen Song, Yan Yan. Averaged Weighted Double Deep Q-Network[J]. Journal of Computer Research and Development, 2020, 57(3): 576-589. DOI: 10.7544/issn1000-1239.2020.20190159
    [5]Zhu Fei, Wu Wen, Liu Quan, Fu Yuchen. A Deep Q-Network Method Based on Upper Confidence Bound Experience Sampling[J]. Journal of Computer Research and Development, 2018, 55(8): 1694-1705. DOI: 10.7544/issn1000-1239.2018.20180148
    [6]Feng Xiang, Ma Meiyi, Shi Yin, and Yu Huiqun. Path Planning for Mobile Robots Based on Social Group Search Algorithm[J]. Journal of Computer Research and Development, 2013, 50(12): 2543-2553.
    [7]Shao Jie, Yang Jingyu, Wan Minghua, and Huang Chuanbo. Research on Cnvergence of Multi-Robots Path Planning Based on Learning Classifier System[J]. Journal of Computer Research and Development, 2010, 47(5): 948-955.
    [8]Li Hongjun, Bu Yanlong, Xue Han, Li Xun, and Ma Hongxu. Path Planning for Mobile Anchor Node in Localization for Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2009, 46(1): 129-136.
    [9]Shi Chuan, Shi Zhongzhi, Wang Maoguang. Online Hierarchical Reinforcement Learning Based on Path-matching[J]. Journal of Computer Research and Development, 2008, 45(9).
    [10]Yu Kun, Wu Guoxin, Xu Libo, Wu Peng. Optimal Path Based Geographic Routing in Ad Hoc Networks[J]. Journal of Computer Research and Development, 2007, 44(12): 2004-2011.

Catalog

    Article views (1666) PDF downloads (1389) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return