• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Feng Ling, Peng Zhiyong, Liu Bin, Che Dunren. A Latent-Citation-Network Based Patent Value Evaluation Method[J]. Journal of Computer Research and Development, 2015, 52(3): 649-660. DOI: 10.7544/issn1000-1239.2015.20131424
Citation: Feng Ling, Peng Zhiyong, Liu Bin, Che Dunren. A Latent-Citation-Network Based Patent Value Evaluation Method[J]. Journal of Computer Research and Development, 2015, 52(3): 649-660. DOI: 10.7544/issn1000-1239.2015.20131424

A Latent-Citation-Network Based Patent Value Evaluation Method

More Information
  • Published Date: February 28, 2015
  • Patent value refers to the exchange value of a patent in the purchase and transaction.It can provide precious information for the decision-makings of patent owners and buyers.Existing patent value evaluation methods are mainly based on training or citation analysis.However, the methods based on training depend too much on the experimental parameters, which results in weak credibility.On the other hand, the methods based on citation analysis only consider direct citations during the evaluation leaving indirect citations and novelty of patent neglected.For these reasons, this paper presents a latent-citation-network based patent value evaluation method to evaluate the value of each patent in which direct citations, indirect citations and novelty are all considered.First, the latent citation association is discovered utilizing similarity between patents and a latent citation network is established.Then, a basic algorithm is implemented to effectively evaluate the value of each patent on the network.Further, an improved algorithm is proposed to solve the problem of inefficiency of the basic algorithm.Finally, to handle the value variations caused by the arrival of a new patent, a dynamic patent value evaluation algorithm is designed to efficiently update the value of the original patents.As shown in the experiments, the proposed methods in this paper are effective.
  • Related Articles

    [1]Jiang Zetao, Huang Qinyang, Zhang Huijuan, Jin Xin, Huang Jingfan, Liao Peiqi. Unpaired Low-Light Image Enhancement Method Based on Global Consistency[J]. Journal of Computer Research and Development, 2025, 62(4): 876-887. DOI: 10.7544/issn1000-1239.202330904
    [2]Qu Zhiguo, Chen Weilong, Sun Le, Liu Wenjie, Zhang Yanchun. ECG-QGAN: A ECG Generative Information System Based on Quantum Generative Adversarial Networks[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440527
    [3]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [4]Guo Zhengshan, Zuo Jie, Duan Lei, Li Renhao, He Chengxin, Xiao Yingjie, Wang Peiyan. A Generative Adversarial Negative Sampling Method for Knowledge Hypergraph Link Prediction[J]. Journal of Computer Research and Development, 2022, 59(8): 1742-1756. DOI: 10.7544/issn1000-1239.20220074
    [5]Dai Hong, Sheng Lijie, Miao Qiguang. Adversarial Discriminative Domain Adaptation Algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. DOI: 10.7544/issn1000-1239.2021.20200569
    [6]Qian Yaguan, He Niannian, Guo Yankai, Wang Bin, Li Hui, Gu Zhaoquan, Zhang Xuhong, Wu Chunming. An Evasion Algorithm to Fool Fingerprint Detector for Deep Neural Networks[J]. Journal of Computer Research and Development, 2021, 58(5): 1106-1117. DOI: 10.7544/issn1000-1239.2021.20200903
    [7]Yu Haitao, Yang Xiaoshan, Xu Changsheng. Antagonistic Video Generation Method Based on Multimodal Input[J]. Journal of Computer Research and Development, 2020, 57(7): 1522-1530. DOI: 10.7544/issn1000-1239.2020.20190479
    [8]Jiang Bin, Liu Hongyu, Yang Chao, Tu Wenxuan, Zhao Zilong. A Face Inpainting Algorithm with Local Attribute Generative Adversarial Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2485-2493. DOI: 10.7544/issn1000-1239.2019.20180656
    [9]Zhang Han, Guo Yuanbo, Li Tao. Domain Named Entity Recognition Combining GAN and BiLSTM-Attention-CRF[J]. Journal of Computer Research and Development, 2019, 56(9): 1851-1858. DOI: 10.7544/issn1000-1239.2019.20180733
    [10]Song Kehui, Zhang Ying, Zhang Jiangwei, Yuan Xiaojie. A Generative Model for Synthesizing Structured Datasets Based on GAN[J]. Journal of Computer Research and Development, 2019, 56(9): 1832-1842. DOI: 10.7544/issn1000-1239.2019.20180353
  • Cited by

    Periodical cited type(2)

    1. 陈传毅,戴卫军. 基于贝叶斯网的高维数据隐藏模式挖掘. 计算机仿真. 2021(01): 287-290+349 .
    2. 黄德胜. 社交网站数据采集与热点分析技术研究. 微型电脑应用. 2021(04): 66-69 .

    Other cited types(1)

Catalog

    Article views (1377) PDF downloads (808) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return