• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Han Meng, Wang Zhihai, Yuan Jidong. A Method to Set Decay Factor Based on Gaussian Function[J]. Journal of Computer Research and Development, 2015, 52(12): 2834-2843. DOI: 10.7544/issn1000-1239.2015.20131883
Citation: Han Meng, Wang Zhihai, Yuan Jidong. A Method to Set Decay Factor Based on Gaussian Function[J]. Journal of Computer Research and Development, 2015, 52(12): 2834-2843. DOI: 10.7544/issn1000-1239.2015.20131883

A Method to Set Decay Factor Based on Gaussian Function

More Information
  • Published Date: November 30, 2015
  • Data stream is a continuous and time changed sequence of data elements, and contained information is different over time. In some data stream applications, the information embedded in the data arriving in the new recent time period is of particular value. Therefore, time decay model (TDM) is used for mining frequent patterns on data stream. Existing methods to design time decay factor have the characteristics of randomness, so the result set is unsteady. Or, the methods just consider 100% recall or 100% precision of the algorithm, while they ignore the corresponding high precision or recall. In order to balance high recall and high precision of the algorithm and ensure the stability of the result set, a novel way to set average decay factor is designed. To further increase the weights of the latest transactions and reduce the weights of historical transactions, another novel way to design decay factor based on Gaussian function is proposed. For comparing the pros and cons of different time factors, four time decay models are researched and designed. The algorithms based on these four models are designed to discover closed frequent patterns over data streams. The performance of the proposed methods to mine the frequent patterns on the high-density or low-density data streams is evaluated via experiments. Results show that using the average time decay factor balances the high recall and high precision of the algorithm. Compared with other ways, setting decay factor based on Gaussian function gets better performance than them.
  • Related Articles

    [1]Lu Guoqing, Zhang Xiaojian, Ding Liping, Li Yanfeng, Liao Xin. Frequent Sequential Pattern Mining under Differential Privacy[J]. Journal of Computer Research and Development, 2015, 52(12): 2789-2801. DOI: 10.7544/issn1000-1239.2015.20140516
    [2]Zhang Xiaojian, Wang Miao, Meng Xiaofeng. An Accurate Method for Mining top-k Frequent Pattern Under Differential Privacy[J]. Journal of Computer Research and Development, 2014, 51(1): 104-114.
    [3]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [4]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [5]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [6]Ao Fujiang, Wang Tao, Liu Baohong, Huang Kedi. CBC-DS: A Classification Algorithm Based on Closed Frequent Patterns for Mining Data Streams[J]. Journal of Computer Research and Development, 2009, 46(5): 779-786.
    [7]Liu Xuejun, Xu Hongbing, Dong Yisheng, Qian Jiangbo, Wang Yongli. Mining Frequent Closed Patterns from a Sliding Window over Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1738-1743.
    [8]Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
    [9]Wang Wei, Zhou Haofeng, Yuan Qingqing, Lou Yubo, and Sui Baile. Mining Frequent Patterns Based on Graph Theory[J]. Journal of Computer Research and Development, 2005, 42(2): 230-235.
    [10]Qin Liangxi, Shi Zhongzhi. SFP-Max—A Sorted FP-Tree Based Algorithm for Maximal Frequent Patterns Mining[J]. Journal of Computer Research and Development, 2005, 42(2): 217-223.

Catalog

    Article views (2705) PDF downloads (691) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return