Dou Nuo, Zhao Ruizhen, Cen Yigang, Hu Shaohai, Zhang Yongdong. Noisy Image Super-Resolution Reconstruction Based on Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(4): 943-951. DOI: 10.7544/issn1000-1239.2015.20140047
Citation:
Dou Nuo, Zhao Ruizhen, Cen Yigang, Hu Shaohai, Zhang Yongdong. Noisy Image Super-Resolution Reconstruction Based on Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(4): 943-951. DOI: 10.7544/issn1000-1239.2015.20140047
Dou Nuo, Zhao Ruizhen, Cen Yigang, Hu Shaohai, Zhang Yongdong. Noisy Image Super-Resolution Reconstruction Based on Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(4): 943-951. DOI: 10.7544/issn1000-1239.2015.20140047
Citation:
Dou Nuo, Zhao Ruizhen, Cen Yigang, Hu Shaohai, Zhang Yongdong. Noisy Image Super-Resolution Reconstruction Based on Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(4): 943-951. DOI: 10.7544/issn1000-1239.2015.20140047
1(Institute of Information Science, Beijing Jiaotong University, Beijing 100044)
2(Beijing Key Laboratory of Advanced Information Science and Network Technology (Institute of Information Science, Beijing Jiaotong University), Beijing 100044)
3(Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences (Institute of Computing Technology, Chinese Academy of Sciences), Beijing 100190)
Denoising and super-resolution reconstruction are performed separately in traditional methods for noisy image super-resolution reconstruction, while in the noisy image super-resolution reconstruction method based on sparse representation and dictionary learning the two processes are compounded together. Since an image patch can be well represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary, two dictionaries are trained respectively from noisy low- and clean high- resolution image patches by enforcing the similarity of two sparse representations with respect to their own dictionary. Given a noisy low-resolution image, sparse representations of low-resolution patches via trained low-dictionary are computed, then the high-resolution image can be reconstructed from high-resolution patches with the help of the related low-resolution sparse representations and trained high-dictionary, after global optimization a clean high-resolution is obtained to accomplish the goal of image super-resolution and denosing simultaneously. The experiments show that zooming low-resolution image to a middle-resolution using locally adaptive zooming algorithm for extracting features can get a better reconstructed image than bicubic interpolation algorithm. By setting the parameter λ, we can obtain the best performance both in super-resolution and denoising with absolute advantages in image quality and visual effect, which demonstrates the validity and robustness of our algorithm.