• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hu Zhaohua, Yuan Xiaotong, Li Jun, He Jun. Robust Fragments-Based Tracking with Multi-Feature Joint Kernel Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(7): 1692-1704. DOI: 10.7544/issn1000-1239.2015.20140152
Citation: Hu Zhaohua, Yuan Xiaotong, Li Jun, He Jun. Robust Fragments-Based Tracking with Multi-Feature Joint Kernel Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(7): 1692-1704. DOI: 10.7544/issn1000-1239.2015.20140152

Robust Fragments-Based Tracking with Multi-Feature Joint Kernel Sparse Representation

More Information
  • Published Date: June 30, 2015
  • Most existing sparse representation based trackers only use a single feature to describe the objects of interest and tend to be unstable when processing challenging videos. To address this issue, we propose a particle filter tracker based on multiple feature joint sparse representation. The main idea of our algorithm is to partition each particle region into multiple overlapped image fragments. Eevery local fragment of candidates is sparsely represented as a linear combination of all the atoms of dictionary template that is updated dynamically and is merely reconstructed by the local fragments of dictionary template located at the same position. The weights of particles are determined by their reconstruction errors to realize the particle filter tracking. Our method simultaneously enforces the structural sparsity and considers the interactions among particles by using mixed norms regularization. We further extend the sparse representation module of our tracker to a multiple kernel joint sparse representation module which is efficiently solved by using a kernelizable accelerated proximal gradient (KAPG) method. Both qualitative and quantitative evaluations demonstrate that the proposed algorithm is competitive to the state-of-the-art trackers on challenging benchmark video sequences with occlusion, rotation, shifting and illumination changes.

Catalog

    Article views (1176) PDF downloads (643) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return