• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cai Xun, Chen Zhi, Kanishka Tyagi, Yu Kuan, Li Ziqiang, Zhu Bo. Second Order Newton’s Method for Training Radial Basis Function Neural Networks[J]. Journal of Computer Research and Development, 2015, 52(7): 1477-1486. DOI: 10.7544/issn1000-1239.2015.20140373
Citation: Cai Xun, Chen Zhi, Kanishka Tyagi, Yu Kuan, Li Ziqiang, Zhu Bo. Second Order Newton’s Method for Training Radial Basis Function Neural Networks[J]. Journal of Computer Research and Development, 2015, 52(7): 1477-1486. DOI: 10.7544/issn1000-1239.2015.20140373

Second Order Newton’s Method for Training Radial Basis Function Neural Networks

More Information
  • Published Date: June 30, 2015
  • A hybrid two-step second-order batch approach is presented for constructing and training radial basis function (RBF) neural networks. Unlike other RBF neural network learning algorithms, the proposed paradigm uses Newton’s method to train each set of network parameters, i.e. spread parameters, mean vector parameters and weighted distance measure(DM) coefficients and output weights parameters. For efficiently calculating the second-order equations of Newton’s method, all the optimal parameters are found out using orthogonal least squares(OLS) with the multiply optimal learning factors(MOLFs) for training mean vector parameters. The simulation results of the proposed hybrid training algorithm on a real dataset are compared with those of the recursive least square based RBF(RLS-RBF) and Levenberg-Marquardt method based RBF(LM-RBF) training algorithms. Also, the analysis of the training performance for optimization of each set of parameters has been presented. The experimental results show that the proposed hybrid optimal weighted DM training algorithm, which is based on the optimization of the mean vectors, weighted DM coefficients and spread parameters, has significant improvement on training convergence speed compared with that of RLS-RBF and has very less computation cost compared with that of LM-RBF. It confirms that Newton’s method solved by OLS is a significantly valuable method for training the RBF neural network.
  • Related Articles

    [1]Zhang Xiaojian, Zhang Leilei, Zhang Zhizheng. Federated Learning Method Under User-Level Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(2): 472-487. DOI: 10.7544/issn1000-1239.202330167
    [2]Feng Xinyue, Yang Qiusong, Shi Lin, Wang Qing, Li Mingshu. Critical Memory Data Access Monitor Based on Dynamic Strategy Learning[J]. Journal of Computer Research and Development, 2019, 56(7): 1470-1487. DOI: 10.7544/issn1000-1239.2019.20180577
    [3]Yang Yatao, Zhang Yaze, Li Zichen, Zhang Fengjuan, Liu Boya. RAKA: New Authenticated Key Agreement Protocol Based on Ring-LWE[J]. Journal of Computer Research and Development, 2017, 54(10): 2187-2192. DOI: 10.7544/issn1000-1239.2017.20170477
    [4]HePan, TanChun, YuanYue, WuKaigui. Optimal Resources Allocation Algorithm for Optional Redundancy and Monitoring Strategies[J]. Journal of Computer Research and Development, 2016, 53(3): 682-696. DOI: 10.7544/issn1000-1239.2016.20148204
    [5]Peng Hu, Wu Zhijian, Zhou Xinyu, Deng Changshou. Bare-Bones Differential Evolution Algorithm Based on Trigonometry[J]. Journal of Computer Research and Development, 2015, 52(12): 2776-2788. DOI: 10.7544/issn1000-1239.2015.20140230
    [6]Fu Lingxiao, Peng Xin, and Zhao Wenyun. An Agent-Based Requirements Monitoring Framework for Internetware[J]. Journal of Computer Research and Development, 2013, 50(5): 1055-1065.
    [7]Zhu Jun, Guo Changguo, Wu Quanyuan. A Runtime Monitoring Web Services Interaction Behaviors Method Based on CPN[J]. Journal of Computer Research and Development, 2011, 48(12): 2277-2289.
    [8]Lu Zhaoxia, Zeng Guangzhou. A Cooperative Monitoring Model of Migrating Workflow[J]. Journal of Computer Research and Development, 2009, 46(3): 398-406.
    [9]Xu Jian, Zhang Kun, Liu Fengyu, Xu Manwu. An Approach to Immunity-Based Performance Monitoring and Evaluation for Computing Systems[J]. Journal of Computer Research and Development, 2007, 44(3).
    [10]Yu Wanjun, Liu Dayou, Liu Quan, Yang Bo. An Approach to Monitoring and Controlling Workflow Systems Based on the Instance State[J]. Journal of Computer Research and Development, 2006, 43(8): 1345-1353.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return