• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wei Ou, Shi Yufeng, Xu Bingfeng, Huang Zhiqiu, Chen Zhe. Abstract Modeling Formalisms in Software Model Checking[J]. Journal of Computer Research and Development, 2015, 52(7): 1580-1603. DOI: 10.7544/issn1000-1239.2015.20140413
Citation: Wei Ou, Shi Yufeng, Xu Bingfeng, Huang Zhiqiu, Chen Zhe. Abstract Modeling Formalisms in Software Model Checking[J]. Journal of Computer Research and Development, 2015, 52(7): 1580-1603. DOI: 10.7544/issn1000-1239.2015.20140413

Abstract Modeling Formalisms in Software Model Checking

More Information
  • Published Date: June 30, 2015
  • Abstraction is a fundamental technique for solving the state-explosion problem in software model checking. In this paper, we survey a variety of abstract modeling formalisms that have been developed for this over the years. We first provide an overview of abstract software model checking based on the theoretical framework of abstract interpretation. We then discuss in detail several abstract modeling formalisms that are represented by 1) boolean Kripke structures, supporting traditional over-approximation or under-approximation; 2) Kripke modal transition systems and mixed transition systems, respectively corresponding to 3-valued and 4-valued Kripke structures, supporting both over-approximation and under-approximation on a single model; and 3) models with hyper transitions, including generalized Kripke modal transition systems and hyper transition systems, allowing for more precise abstract model checking. We discuss the corresponding approximation relations and optimal abstract models, and highlight their shortcomings and the motivations for the development of new formalisms. We also introduce the completeness results of abstract modeling formalisms. Finally, we discuss the problems in theoretical and practical aspects of abstract models and point out future research directions.
  • Related Articles

    [1]Wang Ran, Zhang Yuchao, Wang Wendong, Xu Ke, Cui Laizhong. Algorithm of Mixed Traffic Scheduling Among Data Centers Based on Prediction[J]. Journal of Computer Research and Development, 2021, 58(6): 1307-1317. DOI: 10.7544/issn1000-1239.2021.20201087
    [2]Zhu Hongrui, Yuan Guojun, Yao Chengji, Tan Guangming, Wang Zhan, Hu Zhongzhe, Zhang Xiaoyang, An Xuejun. Survey on Network of Distributed Deep Learning Training[J]. Journal of Computer Research and Development, 2021, 58(1): 98-115. DOI: 10.7544/issn1000-1239.2021.20190881
    [3]Liu Bingtao, Wang Da, Ye Xiaochun, Fan Dongrui, Zhang Zhimin, Tang Zhimin. The Data-Flow Block Based Spatial Instruction Scheduling Method[J]. Journal of Computer Research and Development, 2017, 54(4): 750-763. DOI: 10.7544/issn1000-1239.2017.20160138
    [4]Sun Chunlei, Wen Xiangming, Lu Zhaoming, Sheng Wanxing, Zeng Nan, Li Yang. Energy Efficiency Optimization Based on Storage Scheduling and Multi-Source Power Supplying of Data Center in Energy Internet[J]. Journal of Computer Research and Development, 2017, 54(4): 703-710. DOI: 10.7544/issn1000-1239.2017.20161016
    [5]Liu Liangjiao, Xie Guoqi, Li Renfa, Yang Liu, Liu Yan. Dynamic Scheduling of Dual-Criticality Distributed Functionalities on Heterogeneous Systems[J]. Journal of Computer Research and Development, 2016, 53(6): 1186-1201. DOI: 10.7544/issn1000-1239.2016.20150175
    [6]Wang Qiang, Li Xiongfei, Wang Jing. A Data Placement and Task Scheduling Algorithm in Cloud Computing[J]. Journal of Computer Research and Development, 2014, 51(11): 2416-2426. DOI: 10.7544/issn1000-1239.2014.20130749
    [7]Zhou Xinlian, Wu Min, Xu Jianbo. BPEC:An Energy-Aware Distributed Clustering Algorithm in WSNs[J]. Journal of Computer Research and Development, 2009, 46(5): 723-730.
    [8]Cui Xunxue, Liu Jianjun, Fan Xiumei. A Distributed Anchor-Free Localization Algorithm in Sensor Networks[J]. Journal of Computer Research and Development, 2009, 46(3): 425-433.
    [9]Zhao Mingyu and Zhang Tianwen. DAG Scheduling for Synchronous Communication in the Network Computing Environment[J]. Journal of Computer Research and Development, 2008, 45(4): 695-705.
    [10]Li Xiaolong, Lin Yaping, Hu Yupeng, Liu Yonghe. A Subset-Based Coverage-Preserving Distributed Scheduling Algorithm[J]. Journal of Computer Research and Development, 2008, 45(1): 180-187.
  • Cited by

    Periodical cited type(10)

    1. 汪廷华,胡振威,占宏祥. 一种新颖的无监督特征选择方法. 山东大学学报(理学版). 2024(12): 130-140 .
    2. 杨鹏飞,陈梅,张忠帅,陈永旭. 自适应邻居和图正则的表示学习. 小型微型计算机系统. 2023(03): 553-559 .
    3. 崔峻玮,翟亚红. 近邻成分分析下的DDoS攻击检测. 湖北汽车工业学院学报. 2023(02): 36-41 .
    4. 朱建勇,李兆祥,徐彬,杨辉,聂飞平. 基于图嵌入的正交局部保持投影无监督特征选择. 计算机科学. 2023(S2): 552-560 .
    5. 樊星男,刘晓娟. 一种适用于轴承故障诊断的改进Mixup数据增强方法. 工程机械. 2022(04): 38-45+9 .
    6. 杨秀璋,宋籍文,武帅,廖文婧,任天舒,刘建义. 一种融合Bert预训练和BiLSTM的场景迁移情感分析研究. 计算机时代. 2022(08): 69-74+79 .
    7. 江兵兵,何文达,吴兴宇,项俊浩,洪立斌,盛伟国. 基于自适应图学习的半监督特征选择. 电子学报. 2022(07): 1643-1652 .
    8. 周长顺,徐久成,瞿康林,申凯丽,章磊. 一种基于改进邻域粗糙集中属性重要度的快速属性约简方法. 西北大学学报(自然科学版). 2022(05): 745-752 .
    9. 张巍,张圳彬. 联合图嵌入与特征加权的无监督特征选择. 广东工业大学学报. 2021(05): 16-23 .
    10. 彭明,张继炎,王慧玲,黄宏昆,刘艳芳. 基于自适应邻域和自表示正则的无监督特征选择算法. 南京理工大学学报. 2021(04): 439-446 .

    Other cited types(23)

Catalog

    Article views (1874) PDF downloads (1179) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return