• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tan Shuang, He Li, Chen Zhikun, Jia Yan. A Method of Provable Data Integrity Based on Lattice in Cloud Storage[J]. Journal of Computer Research and Development, 2015, 52(8): 1862-1872. DOI: 10.7544/issn1000-1239.2015.20140610
Citation: Tan Shuang, He Li, Chen Zhikun, Jia Yan. A Method of Provable Data Integrity Based on Lattice in Cloud Storage[J]. Journal of Computer Research and Development, 2015, 52(8): 1862-1872. DOI: 10.7544/issn1000-1239.2015.20140610

A Method of Provable Data Integrity Based on Lattice in Cloud Storage

More Information
  • Published Date: July 31, 2015
  • Using the cloud storage technology, users can outsource their data to the cloud. Such outsourcing meets the requirements of saving hardware costs and simplifying data management, because they no longer store any copies of the data in their local memory, and users cannot fully ensure whether the outsourced data are intact overall. Further, considering the client’s constrained computing power and the large size of the outsourced data, the client cannot take the extra time and effort to verify the data correctness in cloud environment. Therefore, ensuring the integrity of the outsourced data would lead to many security threats. In order to solve this problem, in this paper, we present lattice-based provable data integrity for checking the integrity of the data in the cloud. The proposed scheme not only detects any violations of client data in the cloud, but also has been proven to be safe in a random oracle. In particular, as opposed to schemes based on factoring or discrete log, the proposed scheme resists the cryptanalysis by quantum algorithms. Moreover, the proposed protocol has three other good attributes, namely support for data dynamics, computing on signed data, and multi-client verification. Finally, we present a comparison of the existing data integrity verification mechanism, as well as some open problems of lattice-based provable data integrity.
  • Related Articles

    [1]Bai Lifang, Zhu Yuefei, Li Yongjun, Wang Shuai, Yang Xiaoqi. Research Progress of Fully Homomorphic Encryption[J]. Journal of Computer Research and Development, 2024, 61(12): 3069-3087. DOI: 10.7544/issn1000-1239.202221052
    [2]Zhao Xiufeng, Fu Yu, Song Weitao. Circular Secure Homomorphic Encryption Scheme[J]. Journal of Computer Research and Development, 2020, 57(10): 2117-2124. DOI: 10.7544/issn1000-1239.2020.20200422
    [3]Yao Hailong, Wang Caifen, Xu Qinbai, Li Wenting. A Distributed Biometric Authentication Protocol Based on Homomorphic Encryption[J]. Journal of Computer Research and Development, 2019, 56(11): 2375-2383. DOI: 10.7544/issn1000-1239.2019.20190293
    [4]Li Zengpeng, Ma Chunguang, Zhao Minghao. Leveled Fully Homomorphic Encryption Against Adaptive Key Recovery Attacks[J]. Journal of Computer Research and Development, 2019, 56(3): 496-507. DOI: 10.7544/issn1000-1239.2019.20170443
    [5]Xu Wenyu, Wu Lei, Yan Yunxue. Privacy-Preserving Scheme of Electronic Health Records Based on Blockchain and Homomorphic Encryption[J]. Journal of Computer Research and Development, 2018, 55(10): 2233-2243. DOI: 10.7544/issn1000-1239.2018.20180438
    [6]Chen Zhigang, Song Xinxia, Zhao Xiufeng. A Multi-Bit Fully Homomorphic Encryption with Better Key Size from LWE[J]. Journal of Computer Research and Development, 2016, 53(10): 2216-2223. DOI: 10.7544/issn1000-1239.2016.20160431
    [7]Fu Anmin, Qin Ningyuan, Song Jianye, Su Mang. Privacy-Preserving Public Auditing for Multiple Managers Shared Data in the Cloud[J]. Journal of Computer Research and Development, 2015, 52(10): 2353-2362. DOI: 10.7544/issn1000-1239.2015.20150544
    [8]Yang Xiaoyuan, Zhou Tanping, Zhang Wei, Wu Liqiang. Application of a Circular Secure Variant of LWE in the Homomorphic Encryption[J]. Journal of Computer Research and Development, 2015, 52(6): 1389-1393. DOI: 10.7544/issn1000-1239.2015.20131952
    [9]Li Shundong, Dou Jiawei, Wang Daoshun. Survey on Homomorphic Encryption and Its Applications to Cloud Security[J]. Journal of Computer Research and Development, 2015, 52(6): 1378-1388. DOI: 10.7544/issn1000-1239.2015.20131494
    [10]Song Yan. Homomorphic Commitment Schemes Based on Bilinear Groups[J]. Journal of Computer Research and Development, 2007, 44(9): 1532-1537.

Catalog

    Article views (1211) PDF downloads (987) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return