• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yin Qingyu, Zhang Weinan, Zhang Yu, Liu Ting. A Joint Model for Ellipsis Identification and Recovery[J]. Journal of Computer Research and Development, 2015, 52(11): 2460-2467. DOI: 10.7544/issn1000-1239.2015.20140807
Citation: Yin Qingyu, Zhang Weinan, Zhang Yu, Liu Ting. A Joint Model for Ellipsis Identification and Recovery[J]. Journal of Computer Research and Development, 2015, 52(11): 2460-2467. DOI: 10.7544/issn1000-1239.2015.20140807

A Joint Model for Ellipsis Identification and Recovery

More Information
  • Published Date: October 31, 2015
  • An ellipsis is a gap in a sentence due to the pragmatics conventional use of grammar. Ellipsis is a ubiquitous phenomenon in daily conversation, especially in Chinese. A question-answering (QA) system can hardly automatically understand sentences with ellipsis. As a result, the QA system may produce wrong answer and thus cannot naturally interact with humans. Therefore, it is important to recover these ellipses in order to gain a better QA system. To automatically recover these ellipsis elements, we take the recovery system into two parts: zero anaphora identification and zero anaphora resolution. When connecting these two parts together, previous work always models the two steps separately, which suffers the error accumulation problem. In order to deal with this problem, we propose a joint model method that performs the zero anaphora identification and zero anaphora resolution simultaneously in a unified framework. Besides, we focus on Chinese dialogue text, which is collected from the interview of broadcast. The experimental results show that the proposed joint model method outperforms the state-of-the-art methods significantly.
  • Related Articles

    [1]Jiang Zetao, Zhai Fengshuo, Qian Yi, Xiao Yun, Zhang Shaoqin. Low Illumination Object Detection Combined with Feature Enhancement and Multi-Scale Receptive Field[J]. Journal of Computer Research and Development, 2023, 60(4): 903-915. DOI: 10.7544/issn1000-1239.202111092
    [2]Zhang Heng, Zhang Libo, WuYanjun. Large-Scale Graph Processing on Multi-GPU Platforms[J]. Journal of Computer Research and Development, 2018, 55(2): 273-288. DOI: 10.7544/issn1000-1239.2018.20170697
    [3]Zhao Yongwei, Zhou Yuan, Li Bicheng. Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement[J]. Journal of Computer Research and Development, 2016, 53(5): 1043-1052. DOI: 10.7544/issn1000-1239.2016.20150070
    [4]Lin Suzhen, Zhu Xiaohong, Wang Dongjuan, Wang Xiaoxia. Multi-Band Image Fusion Based on Embedded Multi-Scale Transform[J]. Journal of Computer Research and Development, 2015, 52(4): 952-959. DOI: 10.7544/issn1000-1239.2015.20131736
    [5]Jia Qi, Tian Xiaoyu, Fan Xin, Luo Zhongxuan, and Guo He. Planar Object Recognition Based on Characteristic Ratio[J]. Journal of Computer Research and Development, 2013, 50(9): 1883-1892.
    [6]Liu Hailin, Gu Fangqing, Cheung Yiuming. A Weight Design Method Based on Power Transformation for Multi-Objective Evolutionary Algorithm MOEA/D[J]. Journal of Computer Research and Development, 2012, 49(6): 1264-1271.
    [7]Liu Duo, Dai Yiqi. Construction of Transformation Matrix with a Given Period Modulo N[J]. Journal of Computer Research and Development, 2012, 49(5): 925-931.
    [8]Yuan Guanglin, Xue Mogen, Han Yusheng, Zhou Pucheng. Mean Shift Object Tracking Based on Adaptive Multi-Features Fusion[J]. Journal of Computer Research and Development, 2010, 47(9): 1663-1671.
    [9]Zhao Xiaoming, Ye Xijian. A New Approach to Ridgelet Transform[J]. Journal of Computer Research and Development, 2008, 45(5): 915-922.
    [10]Jiang Ying, Meng Dan. Enforcing Admission Control Using Admission-Time-Ratio and PI Controller[J]. Journal of Computer Research and Development, 2007, 44(1): 65-70.
  • Cited by

    Periodical cited type(28)

    1. 李东亚,白涛,香慧敏,戴硕,王震鲁,陈珍. 基于RoBERTa多特征融合的棉花病虫害命名实体识别. 河南农业科学. 2024(02): 152-161 .
    2. 阮光册,钟静涵,张祎笛. 基于深度学习的术语识别研究综述. 数据分析与知识发现. 2024(04): 64-75 .
    3. 王颖洁,张程烨,白凤波,汪祖民. 基于Transformer的司法文书命名实体识别方法. 计算机科学. 2024(S1): 125-133 .
    4. 梁宏涛,刘雨婷,李帅,高大唤,朱洁. 多策略黏菌算法优化BiLSTM的命名实体识别研究. 中文信息学报. 2024(07): 51-62 .
    5. 王颖洁,张程烨,白凤波,汪祖民,季长清. 中文命名实体识别研究综述. 计算机科学与探索. 2023(02): 324-341 .
    6. 毛亮,赵林均,余敦辉,孙斌. 基于知识蒸馏的企业命名实体识别模型. 计算机工程. 2023(05): 90-96 .
    7. 王馨瑢,胡金南. 人文社科专题文献命名实体识别. 数字技术与应用. 2023(07): 97-100 .
    8. 喻金平,朱伟锋,廖列法. 基于RoBERTa-wwm-BiLSTM-CRF的扶持政策文本实体识别研究. 计算机工程与科学. 2023(08): 1498-1507 .
    9. 张文韩,刘小明,杨关,刘杰. 多层结构化语义知识增强的跨领域命名实体识别. 计算机研究与发展. 2023(12): 2864-2876 . 本站查看
    10. 马玉凤,向南,豆亚杰,姜江,杨克巍,谭跃进. 军事系统工程中的知识图谱应用及研究. 系统工程与电子技术. 2022(01): 146-153 .
    11. 张毅,王爽胜,何彬,叶培明,李克强. 基于BERT的初等数学文本命名实体识别方法. 计算机应用. 2022(02): 433-439 .
    12. 李攀锋,陈樱珏,钟泠韵,林锋. 基于多粒度认知的命名实体识别方法. 四川大学学报(自然科学版). 2022(02): 64-70 .
    13. 杨璐,张恬,郑丽敏,田立军. 兽药致病命名实体Att-Aux-BERT-BiLSTM-CRF识别. 农业机械学报. 2022(03): 294-300 .
    14. 彭雪,赵辉,郑肇谦,庞海婷. 融合多种嵌入表示的中文命名实体识别. 长春工业大学学报. 2022(01): 81-90 .
    15. 刘巨升,于红,杨惠宁,邵立铭,宋奇书,李光宇,张思佳,孙华. 基于多核卷积神经网络(BERT+Multi-CNN+CRF)的水产医学嵌套命名实体识别. 大连海洋大学学报. 2022(03): 524-530 .
    16. 刘巨升,杨惠宁,孙哲涛,杨鹤,邵立铭,于红,张思佳,叶仕根. 面向知识图谱构建的水产动物疾病诊治命名实体识别. 农业工程学报. 2022(07): 210-217 .
    17. 左亚尧,陈皓宇,陈致然,洪嘉伟,陈坤. 融合多语义特征的命名实体识别方法. 计算机应用. 2022(07): 2001-2008 .
    18. 臧凌玉,张应中,罗晓芳. 基于双重深度迁移学习的机械领域命名实体识别. 计算机应用与软件. 2022(09): 219-224 .
    19. 范晓武,葛嘉恒. 高速公路突发事件实体识别及事件分类联合模型研究. 计算机时代. 2021(01): 11-15+20 .
    20. 赵鹏飞,赵春江,吴华瑞,王维. 基于注意力机制的农业文本命名实体识别. 农业机械学报. 2021(01): 185-192 .
    21. 姜同强,王岚熙. 基于双向编码器表示模型和注意力机制的食品安全命名实体识别. 科学技术与工程. 2021(03): 1103-1108 .
    22. 王玉玲. 大数据背景的电子商务商品实体识别算法. 微型电脑应用. 2021(06): 80-83 .
    23. 娄培,方安,赵琬清,杨晨柳,胡佳慧. 电子病历信息抽取可视化分析. 医学信息学杂志. 2021(04): 35-40 .
    24. 刘继明,孙成,袁野. 基于训练模型改进的语音问句信息抽取方法. 科学技术与工程. 2021(18): 7635-7641 .
    25. 郑丽敏,任乐乐. 采用融合规则与BERT-FLAT模型对营养健康领域命名实体识别. 农业工程学报. 2021(20): 211-218 .
    26. 张晗,胡永进,郭渊博,陈吉成. 信息安全领域内实体共指消解技术研究. 通信学报. 2020(02): 165-175 .
    27. 尉桢楷,程梦,周夏冰,李志峰,邹博伟,洪宇,姚建民. 基于类卷积交互式注意力机制的属性抽取研究. 计算机研究与发展. 2020(11): 2456-2466 . 本站查看
    28. 胡万亭,郭建英,张继永. 一种基于改进ELMO模型的组织机构名识别方法. 计算机技术与发展. 2020(11): 25-29 .

    Other cited types(54)

Catalog

    Article views (1353) PDF downloads (921) Cited by(82)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return