• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tian Meng, Wang Wenjian. Generalized Kernel Polarization Criterion for Optimizing Gaussian Kernel[J]. Journal of Computer Research and Development, 2015, 52(8): 1722-1734. DOI: 10.7544/issn1000-1239.2015.20150110
Citation: Tian Meng, Wang Wenjian. Generalized Kernel Polarization Criterion for Optimizing Gaussian Kernel[J]. Journal of Computer Research and Development, 2015, 52(8): 1722-1734. DOI: 10.7544/issn1000-1239.2015.20150110

Generalized Kernel Polarization Criterion for Optimizing Gaussian Kernel

More Information
  • Published Date: July 31, 2015
  • The choice of kernel function is a basic and challenging problem in researches on kernel methods. Gaussian kernel is a popular and widely used one in various kernel methods, and many universal kernel selection methods have been derived for Gaussian kernel. However, these methods may have some disadvantages, such as heavy computational complexity, the difficulty of algorithm implement, and the requirement of the classes generated from underlying multivariate normal distributions. To remedy these problems, generalized kernel polarization criterion has been proposed to tune the parameter of Gaussian kernel for classification tasks. By taking the within-class local structure into account and centering the kernel matrix, the criterion does better in maximizing the class separability in the feature space. And the final optimized kernel parameter leads to a substantial improvement in the performance. Furthermore, the criterion function can be proved to have a determined approximate global minimum point. This good characteristic, coupled with its independence of the actual learning machine, makes the optimal parameter easier to find by many algorithms. Besides this, local kernel polarization criterion function, a special case of generalized kernel polarization criterion function, can also be proved to have a determined approximate global minimum point. The extensions of generalized kernel polarization criterion and local kernel polarization criterion to the multiclass domain have been proposed. Experimental results show the effectiveness and efficiency of our proposed criteria.
  • Related Articles

    [1]Xu Jingnan, Wang Leixia, Meng Xiaofeng. Research on Privacy Auditing in Data Governance[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202540530
    [2]Liu Jialang, Guo Yanming, Lao Mingrui, Yu Tianyuan, Wu Yulun, Feng Yunhao, Wu Jiazhuang. Survey of Backdoor Attack and Defense Algorithms Based on Federated Learning[J]. Journal of Computer Research and Development, 2024, 61(10): 2607-2626. DOI: 10.7544/issn1000-1239.202440487
    [3]Zhang Jing, Ju Jialiang, Ren Yonggong. Double-Generators Network for Data-Free Knowledge Distillation[J]. Journal of Computer Research and Development, 2023, 60(7): 1615-1627. DOI: 10.7544/issn1000-1239.202220024
    [4]Zhao Jingxin, Yue Xinghui, Feng Chongpeng, Zhang Jing, Li Yin, Wang Na, Ren Jiadong, Zhang Haoxing, Wu Gaofei, Zhu Xiaoyan, Zhang Yuqing. Survey of Data Privacy Security Based on General Data Protection Regulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2130-2163. DOI: 10.7544/issn1000-1239.20220800
    [5]Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
    [6]Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465
    [7]Cao Zhenfu, Dong Xiaolei, Zhou Jun, Shen Jiachen, Ning Jianting, Gong Junqing. Research Advances on Big Data Security and Privacy Preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2137-2151. DOI: 10.7544/issn1000-1239.2016.20160684
    [8]Guo Caihua, Wang Bin, Zhu Huaijie, Yang Xiaochun. Incremental Dynamic Social Network Anonymity Technology[J]. Journal of Computer Research and Development, 2016, 53(6): 1352-1364. DOI: 10.7544/issn1000-1239.2016.20140695
    [9]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [10]Hou Qinghua, Wu Yongwei, Zheng Weimin, and Yang Guangwen. A Method on Protection of User Data Privacy in Cloud Storage Platform[J]. Journal of Computer Research and Development, 2011, 48(7): 1146-1154.
  • Cited by

    Periodical cited type(3)

    1. 孟令兵,袁梦雅,时雪涵,张乐,吴锦华,程菲. 跨模态融合和边界可变形卷积引导的RGB-D显著性目标检测. 电子学报. 2023(11): 3155-3166 .
    2. 李晓峰,李东,王妍玮. 基于全卷积神经网络的医疗图像弱边缘检测算法. 哈尔滨理工大学学报. 2021(03): 65-73 .
    3. 许佳,蒋鹏. 视觉和物体显著性检测方法. 山东大学学报(理学版). 2019(03): 28-37 .

    Other cited types(6)

Catalog

    Article views (1459) PDF downloads (716) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return