Paleyfly: A Scalable Topology in High Performance Interconnection Network
-
Graphical Abstract
-
Abstract
High performance interconnection network is one of the most important parts in high performance computing system. How to design the topology of interconnection networks is the key point for the development of larger scale networks. Therefore, we contribute a new hierarchical topology structure Paleyfly (PF), which not only utilizes the property of strong regular graph with Paley graph but also supports the continued scale like Random Regular (RR) graph. Compared with other new high performance interconnection networks, Paleyfly can solve the problems of the scalability of Dragonfly (DF), the physical cost of Fat tree (Ft), the wiring complexity and the storage for routing table of Random Regular and so on. Meanwhile, according to the property of strong regular graph for load-balanced routing algorithm, we propose four routing algorithms to deal with congestion. Finally, through the simulation we briefly analyze the performance of Paleyfly comparing with other kinds of topologies and different routing algorithms. Experimental results show that our topology can achieve better effect compared with Random Regular under the various scales of network and different traffic patterns.
-
-