• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Zhijie, Li Yuanxiang, Wang Feng, He Guoliang, Kuang Li. Online Learning Algorithms for Big Data Analytics: A Survey[J]. Journal of Computer Research and Development, 2015, 52(8): 1707-1721. DOI: 10.7544/issn1000-1239.2015.20150185
Citation: Li Zhijie, Li Yuanxiang, Wang Feng, He Guoliang, Kuang Li. Online Learning Algorithms for Big Data Analytics: A Survey[J]. Journal of Computer Research and Development, 2015, 52(8): 1707-1721. DOI: 10.7544/issn1000-1239.2015.20150185

Online Learning Algorithms for Big Data Analytics: A Survey

More Information
  • Published Date: July 31, 2015
  • The advent of big data has been presenting a large array of applications that require real-time processing of massive data with high velocity. How to mine big data stream in a wide range of real-world applications becomes more and more important. Conventional batch machine learning techniques suffer from many limitations when being applied to big data analytics tasks. Online learning technique with stream computing mode is a promising tool for data stream learning. In this survey, we firstly introduce the motivation and background of big data analytics, and then focus on presenting the family of classical and latest online learning methods and algorithms, which are promising to tackle the emerging challenges of mining big data in a wide range of real-world applications. The main technical content of this survey consists of three parts: 1) online learning for linear model;2) kernel-based online learning for nonlinear model;3) non-traditional online learning methods. This is followed by a discussion about some key problems of large-scale machine learning for big data analytics applications. Finally, we present a few typical scenarios of online learning for big data stream and discuss possible directions for ongoing and future research in this area.

Catalog

    Article views (5260) PDF downloads (3957) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return