• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Yan, Wang Ting, Liu Wanwei, Zhang Xiaoyan. ICIC_Target: A Novel Discovery Algorithm for Local Causality Network of Target Variable[J]. Journal of Computer Research and Development, 2016, 53(7): 1544-1560. DOI: 10.7544/issn1000-1239.2016.20148251
Citation: Li Yan, Wang Ting, Liu Wanwei, Zhang Xiaoyan. ICIC_Target: A Novel Discovery Algorithm for Local Causality Network of Target Variable[J]. Journal of Computer Research and Development, 2016, 53(7): 1544-1560. DOI: 10.7544/issn1000-1239.2016.20148251

ICIC_Target: A Novel Discovery Algorithm for Local Causality Network of Target Variable

More Information
  • Published Date: June 30, 2016
  • Causality research aims to reveal the law of evolution of nature, society and human. Nowadays, the causality research receives widespread attention for its important applications of human life and science research, but there are still many difficulties and challenges. This paper presents a unified model to explain the stimulating and inhibiting causalities. Based on this model, we also present a framework ICIC and a novel algorithm ICIC_Target to infer the local causal structure of a target variable from observational data without any limitation of some assumptions, such as assumption of acyclic structure, hidden variables and so on. Following our descriptions of causality essence and properties, as well as several classical theories proposed by Judea Pearl, Gregory F. Cooper and so on, we introduce concepts of exogenous variable and clique-like structure (IClique) to get rough ordering of variables, which are necessary for revealing the causality accurately and efficiently. To evaluate our approach, several experiments compared with HITON, IC, PC, PCMB and several methods based on four datasets with different data types have been done. The results demonstrate the higher performance and stronger robustness of our algorithm ICIC_Target. In this paper, we also discuss the advantages of stability and complexity of ICIC_Target.
  • Related Articles

    [1]Wang Jindi, Tong Xiangrong. Agent Negotiation Model Based on Round Limit Change of Non-Sparse Trust Networks[J]. Journal of Computer Research and Development, 2019, 56(12): 2612-2622. DOI: 10.7544/issn1000-1239.2019.20190163
    [2]Fan Yanfang, Cai Ying. Collaboration Supported Mandatory Access Control Model[J]. Journal of Computer Research and Development, 2015, 52(10): 2411-2421. DOI: 10.7544/issn1000-1239.2015.20150574
    [3]Ge Xin, Zhao Hai, Zhang Jun. Degree Correlation and Its Features of Spreading on Networks[J]. Journal of Computer Research and Development, 2013, 50(4): 741-749.
    [4]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.
    [5]Tong Xiangrong, Huang Houkuan, Zhang Wei. A Case Based Agent Multi-Issue Negotiation Model[J]. Journal of Computer Research and Development, 2009, 46(9): 1508-1514.
    [6]Bian Zheng'ai, Liu Bo, and Luo Junzhou. A Cooperative-Game-Based Mobile Agent Task Collaboration Model in Network Management[J]. Journal of Computer Research and Development, 2007, 44(2): 193-200.
    [7]Tao Haijun, Wang Yadong, Guo Maozu, and Wang Hanlun. A Multi-Agent Negotiation Model Based on Acquaintance Coalition and Extended Contract Net Protocol[J]. Journal of Computer Research and Development, 2006, 43(7): 1155-1160.
    [8]Yang Pei, Gao Yang, Chen Zhaoqian. Persuasive Multi-Agent Multi-Issue Negotiation[J]. Journal of Computer Research and Development, 2006, 43(7): 1149-1154.
    [9]Gao Jian and Zhang Wei. An Accelerating Chaos Evolution Algorithm of Bilateral Multi-Issue Automated Negotiation in MAS[J]. Journal of Computer Research and Development, 2006, 43(6): 1104-1108.
    [10]Zhao Xinpei, Li Mingshu, Chan Keith, Wang Qing. A Negotiation-Based Approach for Software Process Collaboration[J]. Journal of Computer Research and Development, 2006, 43(2): 314-320.
  • Cited by

    Periodical cited type(2)

    1. 刘梦君,蒋新宇,石斯瑾,江南,吴笛. 人工智能教育融合安全警示:来自机器学习算法功能的原生风险分析. 江南大学学报(人文社会科学版). 2022(05): 89-101 .
    2. 刘波涛,彭长根,吴睿雪,丁红发,谢明明. 面向数字型的轻量级保形加密算法研究. 计算机研究与发展. 2019(07): 1488-1497 . 本站查看

    Other cited types(3)

Catalog

    Article views (1123) PDF downloads (498) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return