• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Dong, Li Zhenyu, Xie Gaogang. Unbiased Sampling Technologies on Online Social Network[J]. Journal of Computer Research and Development, 2016, 53(5): 949-967. DOI: 10.7544/issn1000-1239.2016.20148387
Citation: Wang Dong, Li Zhenyu, Xie Gaogang. Unbiased Sampling Technologies on Online Social Network[J]. Journal of Computer Research and Development, 2016, 53(5): 949-967. DOI: 10.7544/issn1000-1239.2016.20148387

Unbiased Sampling Technologies on Online Social Network

More Information
  • Published Date: April 30, 2016
  • As the popular platform for content sharing and information diffusion, online social network (OSN), such as Facebook and Twitter, have attracted massive researchers in analysis. While using complete datasets provided by the OSN companies can generate the best results, it is hard, if possible, for researchers to get such datasets as most OSN companies are reluctant to share their data in order to protect the users’ privacy. Besides, it may require unreasonable time to get the results in analysis, given the huge amount of data. The alternative is to obtain features of the complete networks based on representative samples. Therefore, how to get unbiased samples or make unbiased estimations on OSN becomes the key premise of OSN research. A general summary of the unbiased sampling technologies on OSN is provided. The general necessary and sufficient condition for unbiased sampling of large-scale networks is studied mathematically at first, and then the performances of the widely-used sampling technologies are compared from the perspectives of sampling principle, sampling bias and sampling efficiency. Finally, the trend in development of sampling technologies on OSN is discussed. This summary can provide the OSN researchers with a valuable reference for use and analysis of sampling technologies.
  • Related Articles

    [1]Fu Nan, Ni Weiwei, Jiang Zepeng, Hou Lihe, Zhang Dongyue, Zhang Ruyu. Directed Graph Clustering Algorithm with Edge Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(1): 256-268. DOI: 10.7544/issn1000-1239.202330193
    [2]Xia Sibo, Ma Minghua, Jin Pengxiang, Cui Liyue, Zhang Shenglin, Jin Wa, Sun Yongqian, Pei Dan. Response Time Anomaly Diagnosis for Search Service[J]. Journal of Computer Research and Development, 2024, 61(6): 1573-1584. DOI: 10.7544/issn1000-1239.202330054
    [3]Zhang Xiaojian, Xu Yaxin, Fu Nan, Meng Xiaofeng. Towards Private Key-Value Data Collection with Histogram[J]. Journal of Computer Research and Development, 2021, 58(3): 624-637. DOI: 10.7544/issn1000-1239.2021.20200319
    [4]Ding Yong, Li Jiahui, Tang Shijie, Wang Huiyong. Template Protection of Speaker Recognition Based on Random Mapping Technology[J]. Journal of Computer Research and Development, 2020, 57(10): 2201-2208. DOI: 10.7544/issn1000-1239.2020.20200474
    [5]Li Shengdong, Lü Xueqiang. Static Restart Stochastic Gradient Descent Algorithm Based on Image Question Answering[J]. Journal of Computer Research and Development, 2019, 56(5): 1092-1100. DOI: 10.7544/issn1000-1239.2019.20180472
    [6]Chen Chi, Feng Dengguo, and Xu Zhen. Research on Database Transaction Recovery Log and Intrusion Response[J]. Journal of Computer Research and Development, 2010, 47(10): 1797-1804.
    [7]Mu Chengpo, Huang Houkuan, Tian Shengfeng, Li Xiangjun. A Survey of Intrusion Response Decision-Making Techniques of Automated Intrusion Response Systems[J]. Journal of Computer Research and Development, 2008, 45(8): 1290-1298.
    [8]Shi Jin, Lu Yin, and Xie Li. Dynamic Intrusion Response Based on Game Theory[J]. Journal of Computer Research and Development, 2008, 45(5): 747-757.
    [9]Liu Li, Wang Zhaoqi, Xia Shihong, Li Chunpeng. Research on Directional Penetration Depth Algorithm in Collision Response[J]. Journal of Computer Research and Development, 2008, 45(3): 519-526.
    [10]Shi Rui and Yang Xiaozong. Research on the Node Spatial Probabilistic Distribution of the Random Waypoint Mobility Model for Ad Hoc Network[J]. Journal of Computer Research and Development, 2005, 42(12): 2056-2062.
  • Cited by

    Periodical cited type(6)

    1. 付楠,倪巍伟,姜泽鹏,侯立贺,张东月,张如玉. 基于本地边差分隐私的有向图聚类算法. 计算机研究与发展. 2025(01): 256-268 . 本站查看
    2. 彭鹏,倪志伟,朱旭辉,陈千. 改进萤火虫群算法协同差分隐私的干扰轨迹发布. 计算机应用. 2024(02): 496-503 .
    3. 刘利康,周春来. RCP:本地差分隐私下的均值保护技术. 计算机科学. 2023(02): 333-345 .
    4. 陈叶旺,曹海露,陈谊,康昭,雷震,杜吉祥. 面向大规模数据的DBSCAN加速算法综述. 计算机研究与发展. 2023(09): 2028-2047 . 本站查看
    5. 尹诗玉,朱友文,张跃. 效用优化的本地差分隐私联合分布估计机制. 计算机科学. 2023(10): 315-326 .
    6. 琚晓颖,何金莉,石琇赟,李顺勇. 基于拉普拉斯机制的集成分类隐私保护研究. 长江信息通信. 2022(08): 23-27 .

    Other cited types(9)

Catalog

    Article views (1371) PDF downloads (828) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return