• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Yang, Wang Da, Ye Xiaochun, Zhu Yatao, Fan Dongrui, Li Hongliang, Xie Xianghui. A Global Hierarchical Adaptive Routing Mechanism in Many-Core Processor Network-on-Chip[J]. Journal of Computer Research and Development, 2016, 53(6): 1211-1220. DOI: 10.7544/issn1000-1239.2016.20150149
Citation: Zhang Yang, Wang Da, Ye Xiaochun, Zhu Yatao, Fan Dongrui, Li Hongliang, Xie Xianghui. A Global Hierarchical Adaptive Routing Mechanism in Many-Core Processor Network-on-Chip[J]. Journal of Computer Research and Development, 2016, 53(6): 1211-1220. DOI: 10.7544/issn1000-1239.2016.20150149

A Global Hierarchical Adaptive Routing Mechanism in Many-Core Processor Network-on-Chip

More Information
  • Published Date: May 31, 2016
  • Accompanied by the arrival of the era of big data, data center has been becoming an infrastructure in human life.Many-core processor provides a highly parallel capability to solve applications in data center such as sorting and searching efficiently. For the purpose to utilize the parallelism of many-core processor, routing algorithm in interconnection network turns into one of the most important issues in many-core system. Mesh and ring are the most employed topological structures in many-core processor for their features of easy implementation and high scalability. Depending on the scope of congestion information, routing algorithms in mesh and ring can be divided into oblivious routing, local adaptive routing, regional adaptive routing and global adaptive routing. The oblivious routing algorithm applied in the mesh architecture affects the load-balance of the network which is reflected in reducing through-put and high packet latency. Current local adaptive routing and regional adaptive routing both suffer from short-sightedness and are not suitable for large scale mesh structure. And prior global adaptive routings are limited by the slow computation of global route. We propose a novel global hierarchical adaptive routing mechanism, which is comprised of a global congestion information propagation network Roof-Mesh and a global hierarchical adaptive routing algorithm GHARA. Roof-Mesh provides a platform to share global congestion information in a hierarchical way among all nodes on the network. Depending on the information supplied by Roof-Mesh, GHARA reduces the procedure of routing by hierarchically computing from large region perspective to neighbor nodes. The result of experiment shows that GHARA performs better than other regional and global adaptive routings.
  • Related Articles

    [1]Yu Zishu, Wang Yifan, Zeng Chen, Zhang Xingzhou, Peng Xiaohui, Xu Zhiwei. Grip System for Multi-Runtime Support in Things-Edge-Cloud Collaborative Applications[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440676
    [2]Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
    [3]Wang Rui, Qi Jianpeng, Chen Liang, Yang Long. Survey of Collaborative Inference for Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(2): 398-414. DOI: 10.7544/issn1000-1239.202110867
    [4]Zhang Wenzhu, Yu Jinghua. Task Offloading Strategy in Mobile Edge Computing Based on Cloud-Edge-End Cooperation[J]. Journal of Computer Research and Development, 2023, 60(2): 371-385. DOI: 10.7544/issn1000-1239.202110803
    [5]Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
    [6]Huang Qianyi, Li Zhiyang, Xie Wentao, Zhang Qian. Edge Computing in Smart Homes[J]. Journal of Computer Research and Development, 2020, 57(9): 1800-1809. DOI: 10.7544/issn1000-1239.2020.20200253
    [7]Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
    [8]Shi Weisong, Zhang Xingzhou, Wang Yifan, Zhang Qingyang. Edge Computing: State-of-the-Art and Future Directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89. DOI: 10.7544/issn1000-1239.2019.20180760
    [9]Deng Xiaoheng, Guan Peiyuan, Wan Zhiwen, Liu Enlu, Luo Jie, Zhao Zhihui, Liu Yajun, Zhang Honggang. Integrated Trust Based Resource Cooperation in Edge Computing[J]. Journal of Computer Research and Development, 2018, 55(3): 449-477. DOI: 10.7544/issn1000-1239.2018.20170800
    [10]Zhao Ziming, Liu Fang, Cai Zhiping, Xiao Nong. Edge Computing: Platforms, Applications and Challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327-337. DOI: 10.7544/issn1000-1239.2018.20170228

Catalog

    Article views (1387) PDF downloads (605) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return