• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhou Yuhang, Zhou Zhihua. Cost-Sensitive Large Margin Distribution Machine[J]. Journal of Computer Research and Development, 2016, 53(9): 1964-1970. DOI: 10.7544/issn1000-1239.2016.20150436
Citation: Zhou Yuhang, Zhou Zhihua. Cost-Sensitive Large Margin Distribution Machine[J]. Journal of Computer Research and Development, 2016, 53(9): 1964-1970. DOI: 10.7544/issn1000-1239.2016.20150436

Cost-Sensitive Large Margin Distribution Machine

More Information
  • Published Date: August 31, 2016
  • In many real world applications, different types of misclassification often suffer from different losses, which can be described by costs. Cost-sensitive learning tries to minimize the total cost rather than minimize the error rate. During the past few years, many efforts have been devoted to cost-sensitive learning. The basic strategy for cost-sensitive learning is rescaling, which tries to rebalance the classes so that the influence of different classes is proportional to their cost, and it has been realized in different ways such as assigning different weights to training examples, resampling the training examples, moving the decision thresholds, etc. Moreover, researchers integrated cost-sensitivity into some specific methods, and proposed alternative embedded approaches such as CS-SVM. In this paper, we propose the CS-LDM (cost-sensitive large margin distribution machine) approach to tackle cost-sensitive learning problems. Rather than maximize the minimum margin like traditional support vector machines, CS-LDM tries to optimize the margin distribution and efficiently solve the optimization objective by the dual coordinate descent method, to achieve better generalization performance. Experiments on a series of data sets and cost settings exhibit the impressive performance of CS-LDM; in particular, CS-LDM is able to reduce 24% more average total cost than CS-SVM.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhou Wei, Wang Chao, Xu Jian, Hu Keyong, Wang Jinlong. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. DOI: 10.7544/issn1000-1239.20220470
    [3]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [4]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [5]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (1805) PDF downloads (884) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return