• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xing Yulong, Chen Yongrui, Yi Weidong, Duan Chenghua. The Optimal Beacon Interval for Synchronous MAC in Low Duty-Cycle Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2016, 53(9): 2009-2015. DOI: 10.7544/issn1000-1239.2016.20150463
Citation: Xing Yulong, Chen Yongrui, Yi Weidong, Duan Chenghua. The Optimal Beacon Interval for Synchronous MAC in Low Duty-Cycle Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2016, 53(9): 2009-2015. DOI: 10.7544/issn1000-1239.2016.20150463

The Optimal Beacon Interval for Synchronous MAC in Low Duty-Cycle Wireless Sensor Networks

More Information
  • Published Date: August 31, 2016
  • Energy efficiency is a fundamental theme in the design of wireless sensor networks protocols, especially for medium access control (MAC) protocols. An energy-efficient MAC protocol can significantly elongate the lifetime of wireless sensor networks by reducing the duty-cycle of sensor nodes to an ultra-low level. Synchronous MAC can be even more efficient in data transfer at the cost of requiring tight time synchronization through periodical beacon dissemination. The length of the beacon interval may greatly affect the energy efficiency of a synchronous MAC. A shorter beacon interval leads to higher synchronization cost due to frequent beacon sending and receiving, while a longer beacon interval will lead to a larger guard time and longer idle listening due to clock drift. Therefore, there is a tradeoff between these two parts of energy consumption. In this paper, we investigate the optimal beacon interval for synchronous MAC in low duty-cycle sensor networks, and then present a strategy that adaptively utilizes the optimal beacon interval in a TDMA-based MAC protocol (called Opt-TDMA). By configuring the beacon interval to its optimal value according to the data packets rate and network size, Opt-TDMA can reduce the overall power consumption of both sending/receiving beacons and data packets. Experimental results demonstrate that Opt-TDMA is more energy-efficient than pure TDMA protocol and SCP-MAC by using optimal beacon interval and contention-free transmission.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhou Wei, Wang Chao, Xu Jian, Hu Keyong, Wang Jinlong. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. DOI: 10.7544/issn1000-1239.20220470
    [3]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [4]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [5]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (1372) PDF downloads (342) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return